

S0
BASIG

REFERENCE
MANUAL

WANG

r

PREFACE

PREFACE

This manual covers the BASIC language specification for Wang
3300 Standard Basic and Wang 3300 Extended Basic, and terminal
operating procedures of these WANG 3300 BASIC systems for use
with the WANG 3310/11 1/0O Typewriter terminal, the Wang 3315
Teletype* terminal and the WANG 3320 cassette tape drives.

Extended BASIC is generally identical to Standard BASIC except
that it has additional features such as matrix operations, string
variables, file operations, and expanded printing capability.

The operation and language of the WANG BASIC systems using
the two types of terminals are quite similar. The main differences
are found in the use of certain special characters in the language
and in the terminal operating procedures.

If the reader has no fundamental knowledge of the BASIC language,
it is recommended that the WANG 3300 BASIC BEGINNER'S
PROGRAMMING GUIDE be read prior to the use of this manual.

*Trademark of the Teletype Corp., Skokie, Hlinois

TABLE OF CONTENTS

TABLE OF CONTENTS

INTRODUCTION o s e e e e e e e e 1
WANG 3300BASIC e 2
Communicatingwith BASIC 2
BASIC Program Mode 3
Immediate ExecutionMode. 5
BASICCommands 6
Program Start and Execution 6
BASIC Error Detection 7
Sharing of CommonData. 7
BASIC Program Storage 8
BASIC PROGRAM STRUCTURE AND COMPONENTS o]
LineNumber, o]
BASIC Program Lines. 9
Program Line Format 10
Expressions 10
BASIC VerbSyntax. 11
BASICCharacters. 12
NumericConstants 12
VariableNames 13
Mathematical Functions 14
User Functions 14
ArithmeticSymbols. 15
Relational Symbols 15
BASIC SYSTEMSCOMMANDS 17
LIST . . . 18
LOAD. e e 19
RERUN o 20
RESTART i i e 21
RUN . . . e 22
SAVE . . . e 23
START e 24
BASICSTATEMENTS e, 25
COM e 26
DATA e 27
DEF. e 28
DIM. . . e 29
END. e 30
FOR. e 31
GOSUB e 33
GOTO e 35
IF e 36
INPUT e 37
LET . . o 38
NEXT e e 39
PRINT e 40
RANDOM. i, 43
READ. 44
REM 45

TABLE OF CONTENTS

TABLE OF CONTENTS (continued)

RESTORE 46
RETURN oo . 47

STOP 48
TRACE 49
EXTENDED BASIC STRUCTURE AND COMPONENTS. 51
Alphanumeric String Variables 51
Matrix Operations 54
Data File Operations 57
EXTENDED BASIC STATEMENTS. 60
CHAIN 61
GOTOON. 62
PRINTUSING 63

% — Image Statement (for PRINT USING) 66

Matrix Operations 67
MAT Addition 67
MATCON 68

MAT Equality. 69
MATIDN oo 70
MATINPUT. 71

MAT INVandDET 72

MAT Multiplication. 73
MATPRINT 74

MAT PRINTUSING 75
MATREAD 76

MAT Scalar Multiplication 77

MAT Subtraction 78
MATTRN 79

MAT ZER . . "L 80

Data File Operations 81
IFEND o 81
FILEEND 82
FILEMOD 83
FILEREAD 84

FILES 856
FILESAVE 86
FILEWRITE. 87

MAT FILEREAD 88

MAT FILEWRITE. 89

BASIC TERMINAL OPERATING INSTRUCTIONS 90
Initial Start Procedures 90
Deleting Incorrect Characters 90
Deleting the Current Line 91
Deleting the Previously Entered Line 91
Requests for Execution 91
Breaking Program Execution 92
Initiating for New Program Entry 92

Vi

r

TABLE OF CONTENTS

TABLE OF CONTENTS (continued)

BASIC ERROR MESSAGES. 93
PROGRAM LIMITS o e e e 107
APPENDIX A: BASIC System Syntax Rules A-1

B-1

APPENDIX B: SamplePrograms

vii

INTRODUCTION

INTRODUCTION

The WANG 3300 BASIC system is a multi-terminal time-sharing
system utilizing either the WANG 3300 Standard BASIC language
or the WANG 3300 Extended BASIC language. These languages
are an extension of the BASIC language which was originally
developed at Dartmouth College and has obtained universal popu-
larity. The extensions of the Dartmouth BASIC language found in
WANG 3300 BASIC occur primarily in selective format changes
including a one line program calculator mode and terminal
operating commands. The languages are generally quite similar.

WANG 3300 Standard BASIC is essentially a compatible subset of
WANG 3300 Extended BASIC. WANG Extended BASIC contains
a number of additional features including matrix operations, alpha-
numeric string variables, file operations, and expanded printing
capability. It requires a slightly larger amount of computer mem-
ory to hold the system.

The WANG 3300 BASIC systems consists of a WANG 3300 com-
puter, WANG 3310 Typewriter terminals and WANG 3320 cassette
tape drives or WANG 3315 Teletype terminals, or a combination
of these. This manual contains the BASIC language specifications
for both Standard and Extended BASIC and terminal operating
procedures for both the 3315 Teletype and the 3310 Typewriter/
3320 Cassette Tape terminal configurations. With these configu-
rations a number of terminals and possibly cassette tape drives are
located in the immediate vicinity of the computer. At the termi-
nals, a number of users can simultaneously enter and execute
programs in the BASIC language to solve a great variety of
problems. The terminals are all linked to the WANG 3300 com-
puter which communicates with the terminals and executes
entered problems on a time-shared basis. Each user operates his
terminal much like an electric typewriter. The BASIC language in
which the problems are entered is relatively simple to learn. The
use of it along with uncomplicated terminal operating procedures
leaves the user free to concentrate on the problem being solved.

The first section of this manual, WANG 3300 BASIC, provides a
general introduction to both the WANG Standard and Extended
BASIC language and terminal procedures. The remaining sections
deal with the definition and specifications of the WANG 3300
Standard BASIC language format, the additions to it for Extended
Basic, system terminal commands, BASIC program statements,
terminal operating procedures, error messages, and program limits.
The appendices contain concise language syntax rules and pro-
gramming examples.

WANG 3300 BASIC

WANG 3300 BASIC

Communicating with BASIC

WANG 3300 BASIC is a multi-user, conversational, time-sharing
system for solving the problems in science, engineering, mathe-
matics, and business. A user of the WANG system can program
and run his application as one of 16 simultaneous users of the
system.

Programs are written in the easy-to-learn BASIC language. This
language consists of a combination of

English words: LET, PRINT, READ
Mathematical functions: | 0G, SIN, EXP
Expressions: Y + 2, (A + B)/C
Variables: C2, D, E

A BASIC word and verb syntax form a BASIC statement. A series
of statements form a program for the definition and solution of a
problem. After a program has been entered, the user may then
enter a BASIC command for storing his program on tape. Pro-
grams originated by the user may also be supplemented by a large
number of interesting and practical library programs.

The standard terminals for system-user communication are the
WANG 3315 Teletype and the WANG 3310 I/0O Writer, which
may be taken off-line and used as a conventional electric
typewriter.

The preliminary steps for entering a program for solution by the
BASIC system involve the WANG terminal. The turning on of the
terminal and the striking of the ATTENTION key on the 3310 1/0
Writer or the ESCAPE key (ESC) on the 3315 Teletype will cause
the system to type out 3300 BASIC READY and a colon, thus:

3300 BASIC READY

The words ‘3300 BASIC READY’ mean that the system is pre-
pared to receive instructions from the user: the colon indicates
that the terminal now belongs to the user. He may type a com-
mand or proceed with entering his program. The terminal belongs
to the user until he strikes a carriage return, which returns the
terminal to the system. The colon also permits the user to identify
the source of any line of the typeout -- lines preceded by a colon
are user inputs, those without are system outputs. For example, a
line may be entered for immediate execution:

: PRINT LOG (5.2 + 613)

BASIC Program Mode

WANG 3300 BASIC

The system responds with the solution and a system input
request -- the colon:

5.3990673

The WANG BASIC system provides correction procedures that
ease the initial use of the system and expedite its effectiveness.

If the user detects an error in a program text line he is currently
entering, he may type a degree character (which is an uppercase E)
on the 3310 I/O Writer or a blackslash character () on the 3315
Teletype. This character will cause that line to be ignored. When
the ‘O’ or ‘\' is encountered, the system will remove the contents
of the current line. The user may then reenter the correct line.
For example,

1120 LET X=AB/C° on the 3310 I/O Writer
1120 LET X=AB/C\ on the 3315 Teletype

The user may correct single characters in a line by using the back-
space key on the 3310 I/O Writer or the backarrow (<) on the
33156 Telety'pe. This action ‘crosses out’ the most recently typed
characters. Several characters may be so crossed out in succession,
as shown in the following examples:

3315 1120 LET X=10+ «<«<«20+J
Teletype Three backarrows
to remove last 3 user
characters correction

:120 LET X=20+J == Thelineas it will be
processed by the system

On the 3310 I/0O Writer, the backspace sequence is completed by
manually turning the carriage to advance the paper to the next
line; the corrected text may then be entered.

<<
33101/0 1120 LET X=10+ = Three backspaces to
Writer remove last 3 chars.

20+J = User correction
1120 LET X=20+J = Line as it will be processed

by the system

A BASIC program is a group of lines containing numbered execu-
table and nonexecutable program statements. System commands
direct program execution but are not part of the program itself.
BASIC program statements are saved as they are entered for ulti-
mate execution; commands, on the other hand, cause action as soon
as they are entered and, therefore, are not saved.

WANG 3300 BASIC

A BASIC program line is one or more statements for processing or
solution by the system. Each program line is comprised of a line
number and at least one statement with verb syntax. A series of
statements, separated by colons, may be entered on one line — with
one line number. For example,

LSystem Input Request

Line Number] rLBASIC Statemena
IlQOilFOR I=1 TO 10:PRINT I, XCID¥Y: NEXT I]

Multiple statements on one line provide for compression of a pro-
gram into fewer lines and are of great use in the immediate execu-
tion mode, described on page 5. A single statement per program
line can, however, be considered the standard way to program in
BASIC because corrections can be made more easily and references
to an exact statement can be more precise.

The numbered lines may be entered in any order; the system sorts
them into ascending numeric order before execution. If two lines
should have the same number, the line last entered replaces the
first and is used by the system. A user may delete a line previously
entered simply by entering the line number and striking the
carriage return.

Standard BASIC program statements are typed one line at a time
into the system until a complete BASIC program has been entered.
After each line is received, the system performs a syntax error
check, types an error message if errors are found, and saves the
line. When all program lines have been entered and corrected,
the BASIC program is executed by the entry of a command
(RUN).

An example of a simple program for the solving of a quadratic
equation and the commands for its execution is shown below:

The equation:
2x2+9x+3=0

The method of solution:

—b +\/ b2 — 4ac

2a

X=

forb=9,a=2,¢c=3.

Immediate Execution Mode

WANG 3300 BASIC

The BASIC program:

3300 BASIC READY

START = BASIC command to initialize the system

10 REM THIS IS PROBLEM 1 - A nonexecutable statement

20 LET B = 9: LET A = 2: LET C = 3 -» BASIC statements
30 LET X = (-B + SQR(BT2- (L4*A®CIDD/(2%AD

LO PRINT X

. RUN =» BASIC command to execute the program

BASIC program execution requires that each statement be pre-
ceded by a line number; this is ‘program mode’ entry. WANG
BASIC provides an ‘immediate mode’ entry for the execution of a
single program line. This mode provides, in effect, an implicit one
line program and execution. It may also be used to set and/or
examine values and expressions or perform calculations imme-
diately after they are entered. The immediate mode entry follows
the format rules of standard program entry with one exception:
the line number is not entered at the beginning of the statement
line. The missing line number tells the system that this line is to be
executed immediately. Once entered and executed, immediate
mode lines are not saved, as are standard program statements.

The following examples are valid immediate mode entries and
demonstrate the usefulness of this mode:

PRINT (4,2% SINC1.456-4%,033))-1.2E1
LET X = 2: LET Y = 3: PRINT X, Y + EXP(X¥Y)
FOR I = 1 TO 6: PRINT I, XCID®Y: NEXT I

The first example — the PRINT statement — allows the system to
act as a conversational calculator. The system performs the calcula-
tions and immediately prints out the answer. The LET statement
shows the use of the immediate mode for setting variable values
and for displaying values computed from them; the FOR, TO
statement demonstrates the use of one-line loops — here to display
a function of a previously defined array (arrays are described on
page 13).

WANG 3300 BASIC

BASIC Commands

Program Start and Execution

Any BASIC verb (except INPUT and those which reference a line
number, e.g., GO TO) may be used in the immediate mode; some
verbs, however, have little meaning which will be obvious to the
user when he is composing the program line. The verbs customarily
used are:

FOR

LET
NEXT
PRINT
RESTORE
TRACE

A BASIC command is simply a request to the system for the per-
formance of a particular function. For example, START initializes
the system to receive a new program by removing any previous
program text and variables: RUN executes the current program.
Some commands are followed by a line or unit number: RERUN
60 means run the program beginning with line 60 without re-
initializing the current values of the variables; SAVE 3 means
record this program on tape number 3. Other commands have no
statement or unit references: RUN, START, RESTART. System
commands, unlike BASIC program statements, are not saved by
the system.

The ATTENTION key on the 3310 1/0O Writer or the ESCAPE
(ESC) key on the 3315 Teletype may be used as a special
‘command’. |f, during program execution, the user wishes to inter-
rupt the system processing, he strikes the ATTENTION or ESCAPE
key. Program execution will be terminated and the terminal re-
turned to the user with the following response:

3300 BASIC READY

A BASIC program is initialized by entry of a START or RESTART
command. The START command initializes the entire user program
area, removing all previously stored program text and variables.
The RESTART command, on the other hand, initializes the user
program area but does not remove common variable data to be
used by successive programs. After entering one of these com-
mands, the user may then proceed with the entering of his
program.

BASIC Error Detection

Sharing of Common Data

WANG 3300 BASIC

A RUN or RERUN command requests execution of a user’s pro-
gram. The major difference between RUN and RERUN is that
RUN causes the entire program to be run from the beginning and
all variables to be reset to initial values. RERUN, on the other
hand, does not reinitialize values (leaves them at the current set-
ting). The RERUN command may also be used to run a portion of
a program; e.g., RERUN 60 means to rerun the program beginning
with program line 60.

Program execution is terminated when a STOP or END statement
is encountered in the program or when the user depresses the
ATTENTION or ESCAPE key on the terminal or when an error is
detected.

One of the features of the WANG 3300 BASIC system is its almost
instant error detection and reporting. The error reporting system
can point out an error in the user text as it is entered.

When an error is detected, the text line being scanned by the sys-
tem is typed (if it is not already on the typewriter sheet), and, on
the next line, an up-arrow (1) is placed at the point of the current
scan, followed by the error message number. The example below
shows an error detected for unbalanced parenthesis; the message
number for this error is 05. The complete set of error codes is
listed in a later section of this manual.

:240 X=SIN ((Y=P1)+5
YErR 05

The colon on the line following the error-detection line gives the
system back to the user. He may then correct the line or condition
causing the error.

The sharing of data common to several programs is a significant
feature of the WANG BASIC system. A COM statement is entered
as the first numbered line ina program to allow the storage of in-
formation in memory for sharing by a subsequent program. There
may be many COM statements in one program — just as long as
they are the first numbered executable lines. The attributes
assigned to COM statements must be the same when entered in
subsequent programs, which must be initialized by a RESTART
command. An example of a program using COM statements is
shown on the following page.

WANG 3300 BASIC

BASIC Program Storage

START
1 REM THIS IS PROGRAM 1
2 COM A(15), B(6), C

J »Program statements

RUN

RESTART

1 REM THIS IS PROGRAM 2

2 COM A(15), B(6), C, DC10D
3 COM ECH, 1D, F(3), G(6D

Program statements

RUN

BASIC programs which will have frequent use by one or more pro-
grammers may be written on tape for future entry into the system.
The SAVE command causes all user text presently in core to be
punched on paper tape on the user teletype terminal or written on
a specified cassette tape. The LOAD command is used to read and
append the file of user text currently loaded on a teletype paper
tape or written on a specified cassette tape to the end of the user
text in core. This command permits either additions to user-typed
text or entry of a complete, previously saved program.

BASIC PROGRAM STRUCTURE
AND COMPONENTS

BASIC PROGRAM STRUCTURE AND COMPONENTS

Line Number

BASIC Program Lines

A BASIC program must have a certain ‘structure’ — simple though
it is. The rules are few and easy to follow. The structure of the
program implies the use of certain components. These components
include the allowable characters, the kinds of symbols, and the
various functions that BASIC can use.

The following pages contain explanations of these rules and
requirements.

For BASIC program execution, every program statement must be
assigned a line number. Line numbers not only identify the lines
but specify the order in which the program lines are to be executed
by the system. These lines do not have to be entered in sequence
order; the BASIC system automatically processes the lines in order
by line number. Line numbers should be assigned so that there are
unassigned numbers between consecutive statements for the in-
sertion of additional lines.

The line number can be one to four digits in length.

A BASIC program line is one or more statements for processing or
solution by the system. Each program line is comprised of a line
number and at least one statement with verb syntax. A series of
statements, separated by colons, may be entered on one line — with
one line number. For example,

4O LET X = 2: LET Y = 3: PRINT X,Y

There are two types of statements: an executable statement speci-
fies the action to be performed. For example,

LET Q = 8%y

A nonexecutable statement provides information. For example,

DATA 2, -7,5

Spaces are customarily used between characters in a program line
for readability; the system ignores them. For example, 10 READ,
A, B, C, D is easier for the programmer to read than T0READA,B,
C,D; both, however, are equally clear to the BASIC system. The
condensed format conserves user text area space.

BASIC PROGRAM STRUCTURE
AND COMPONENTS

Program Line Format

Expressions

The formats for standard BASIC program lines and for immediate
execution lines are shown below. A line number is required for
the standard program mode but not for the immediate execution
mode.

Program Mode : 100 LET X=(C¥E)/G
Immediate Mode : PRINT(C®E)/G

The colon (:) is typed by the system to indicate that the pro-
grammer may proceed to enter his lines. This symbol is also useful
for identifying lines in the program typeout — those preceded by a
colon were entered by the user; those without are system output.

An expression may be a variable, a function, or a constant: it may
also be a combination of variables and constants connected by
arithmetic symbols. An expression may be preceded by plus or
minus and may be contained within parentheses. The following
examples demonstrate the variety as well as the simplicity or
complexity of BASIC expressions.

LET X = [A]

LET X = [5%Y+FNB(X) - LOG(Z))

LET J([x2+51,K)=9

FOR T =[3+k2] 70 [4%Y] sTep [DC 341D - 1
PRINT |SINCKD - 4%]

| These are all expressionsj

Expressions are executed by the BASIC system in the order pre-
scribed below; when the operation is not explicit, it is executed
from left to right in the expression.

1. The formula within parentheses is executed before
the parenthesized quantity can be used in additional
executions in the expression and before any other
single formulas outside the parentheses.

2. When there are no parentheses in the expression and
the operations are to be executed on the same level,
these operations are performed from left to right. For
example, in the expression A * B/C, B is multiplied
by A and the product is divided by C.

10

4

BASIC PROGRAM STRUCTURE
AND COMPONENTS

3. Operations in an expression are executed in sequence
from highest level to lowest level, as follows:

-Operations within parentheses
-Exponentiation (1)
-Multiplication or division (* or /)
-Addition or subtraction (+ or —)

BASIC Verb Syntax

The following editorial rules are used in this handbook to define
and illustrate the components of BASIC program statements and
system commands.

1. Uppercase letters (A through Z), digits (O through 9).
and special characters (*, /, +, etc.) must always be
used for program entry exactly as they are shown in
the format examples.

2. Information in lowercase letters is to be supplied by
the user; for example, in the program line ‘GOSUB
line number,” the line number must be entered by the
user.

3. Square brackets, [], indicate that the enclosed in-
formation is optional. For example,

RESTORE [integer]

means that the RESTORE statement verb can be
optionally followed by an integer,

RESTORE

°" RESTORE 2

are both legal forms.

4. Braces, { } , enclosing vertically stacked items in-
dicate that one of the items is required. For example,

f scalar variable (

COM
)\ array variable ’

means that the COM statement elements can be:
a scalar variable; e.g., C2

or
an array variable; e.g., D (4, 8)

11

BASIC PROGRAM STRUCTURE

AND COMPONENTS
5. Ellipsis, ... , indicates that the immediately preceding
item may occur one or many times in succession. For
example,

INPUT variable, variable, ...

6. Except within quotation marks, BASIC syntax ignores
blanks.

7. When one or more items appear in sequence, these
items or their replacements must appear in the speci-
fied order.

BASIC Characters

A BASIC program is entered by means of a typewriter terminal
which provides the following characters:

1. Twenty-six uppercase alphabetic characters: A
through Z.

2. Numeric digits: 1234567890.
3. Special characters:

' Single quote ! Exclamation mark
"' Double quote , Comma
& Ampersand . Period
@ At ; Semicolon
+ Plus : Colon
- Minus < Less than
< Asterisk = Equal to
1 Up arrow > Greater than
/' Right oblique # Pound Sign
(Left parenthesis Blank
) Right parenthesis
< Less than or equal to
> Greater than or equal to .
3310 1/0 Writer only
Not equal to
© Degree
\ Left oblique (backslash) 3315 Teletype only
< Back arrow

Numeric Constants

A numeric constant may be positive or negative and may consist
of as many as eight digits. Entered numbers with greater than
eight digits will result in an ‘illegal number format’ error. The
following are examples of numeric constants in BASIC:

4,-10, 1432443, —.7865, 24.4563

If the exponential notation, E, is used, the value of the constant is
equal to the number to the left of the E multiplied by 10 to the
power of the number to the right of the E. For example, 4.5E7
indicates that ‘4.5 is to be multiplied by 107.

12

4

Variable Names

BASIC PROGRAM STRUCTURE
AND COMPONENTS

The magnitude of a numeric constant must be less than 1E+63 and
greater than or equal to 1E-65.

A variable name is a string of characters that represents a data
item that is operated on according to certain executable verbs
such as READ, INPUT, LET, NEXT, FOR. The value assigned by
the verb in a program line will not change until a second program
line is encountered with a new value for the variable.

There are two types of variables: scalar and array. A scalar variable
is designated by a letter or a letter followed by a digit:

AA4

An array variable is used to define the elements of an array. These
variables are used when a single subscript or a double subscript
might ordinarily be used:

(a1, ag, ag, ...)or bi'j

An array variable consists of a single letter (A through Z) which is
the array name, followed by subscripts in parentheses. A(3),
B(2,3) would be array variables. For all array variables, the DIM
statement is used with the array name and the numeric value sub-
scripts to provide space for a complete array of one or two dimen-
sions. The DIM statement must precede the first reference to the
variable. For example:

20 DIM Q(25)

30 READ N
4O FOR I = 1 TO N
50 READ QCI)

55 PRINT QCID

60 NEXT 1

70 DATA 5

80 DATA 4, 5, 19, 37, 43

For cases where an array variable will be used as Common Data, it
is specified in a COM statement to provide storage space instead of
a DIM statement.

The following rules apply to the use and assignment of array
variables:

1. The numeric value of the subscript for the first array
element must be 1; zero is not allowed.

2. The dimension(s) of an array cannot exceed 255.

13

BASIC PROGRAM STRUCTURE
AND COMPONENTS

Mathematical Functions

User Functions

These functions have special names, followed by an expression in
parentheses (or relation), as shown in the following examples:

SINC3)
COS(X + Y

Find the sine of 3
Find the cosine of the value
of the expression X + Y

The following table provides the list of these functions and the
BASIC interpretation of them.

Function

BASIC Interpretation

SIN(expression)

COS(expression)
TAN (expression)
ATN (expression)
EXP(expression)
LOG(expression)
ABS(expression)
SQR (expression)
RND(expression)

INT (expression)
SGN (expression)

BOOL (relation)

AND (expression,.......

OR(expression,.......)

Find the sine of the expression (radians)

Find the cosine of the expression (radians)
Find the tangent of the expression (radians)
Find the arctangent of the expression (radians)
Find e to the power of the expression

Find the natural logarithm of the expression
Find the absolute value of the expression

Find the square root of the expression

Produce a random number between 0 and 1 (the
expression is required but is meaningless here)
Take the integral value of the expression
Assign the value 1 to any positive number, 0 to
zero, and —1 to any negative number.

For example:
SGN(9.15) =1
SGN(0)=0

SGN(-.124) = —1

Find the true value of the relation

(result = 1 if relation true; = 0 if false).
Find the true value of the expressions
(result = 1 if all expressions are non-zero;
otherwise = 0).

(result = 1 if any expression is non-zero;
otherwise = 0).

A ‘user function’ defines a function which will be used several
times within a program. Such a function is introduced by a DEF
statement. The format of the function itself is FN followed by a
letter or a digit, a scalar variable in parentheses; an equals sign,
and an expression. A function could be used in a program as

follows:

14

4

Arithmetic Symbols

Relational Symbols

BASIC PROGRAM STRUCTURE
AND COMPONENTS

The function is defined:

30 DEF FNE(Z1) = EXP(-Z113+5)

Then, if the following statement is entered,

4O LET Q = A/B + FNE(10)

the value of 10 will be assigned to Z1; the result,

EXP(~1043+5)

will be used in place of the referenced FNE(10) in program line 40.

The following arithmetic symbols are used in BASIC to write a
formula. Operations are executed in sequence from the highest
level to the lowest level: (1) operations within parentheses (2)
raising a number to the power, (3) multiplication and division, and
(4) addition and subtraction.

Symbol Sample Formula Explanation
t AtB Raise A to the power of B.
® A*B Multiply B by A.
/ A/B Divide A by B.
+ A+B Add B to A.
- A-B Subtract B from A.

Relational symbols are used with the |F verb or the BOOL func-
tion when values will be compared before processing. For example,

20 IF G <10 THEN 63

which means that if G is less than 10, processing will continue at
program line 63.

30 LET X = BOOL(CA=B)

Assigns a value of one to X if A is equal to B, and zero if it is not.

15

BASIC PROGRAM STRUCTURE
AND COMPONENTS

Relational Symbols (continued)
The following relational symbols may be used with BASIC:

3315 3310
Teletype 1/0 Writer
Symbol Symbol Sample Relation Explanation
= = A=B Aisequal to B
< < A<B A is less than B
<= < A<=B, A<B A is less than or equal to B
> > A>B A is greater than B
>= = A>=B, A-B A is greater than or equal to B
<> £ A<>B, Af£B A is not equal to B

16

BASIC SYSTEM COMMANDS

BASIC SYSTEMS COMMANDS

A BASIC command provides the user with a means for communi-
cating with the system —— to request system operation. A com-
mand thus facilitates the running or modification of a program
but is not part of the program itself. For example, the RUN
command initiates the execution of an entered program; the
SAVE command directs that all program text be punched on
paper tape or written on a cassette tape.

BASIC commands are entered one line at a time. They differ from
BASIC statements because they are not preceded with line num-
bers, they have unique verbs and only one command can be
entered on one line; that is, multiple commands separated by
colons on one line are not allowed. BASIC program statements
are saved as entered for ultimate execution; BASIC commands
cause action and are not saved.

The BASIC commands are described on the following pages.

17

BASIC SYSTEMS COMMANDS

LIST

Format

Purpose

Example

LIST [line number [, line number]]

The LIST command will cause the typing out of user program text
in statement number sequence; the extent of the listing depends
upon the command format. If LIST is entered without a following
line number, the complete program text is produced. If one line
number is entered with the command, just that program line is
produced. If two line numbers are entered, all text from the first
through the second line numbers, inclusive, will be listed.

LIST
30 READ A, B, C, M

990 END
or
LIST 30,50
30 READ A, B, C, M
4O LET G=A®D-B¥C
50 IF G=0 THEN 60
or

LIST 30
30 READ A, B, C, M

18

LOAD (See SAVE also)

format

Purpose

Example

BASIC SYSTEMS COMMANDS

LOAD unit

where unit is a tape cassette number and file, a disk file name,
or blank.

When the LOAD command is entered, the file of user text currently
on the specified tape or on disk will be appended to the end of the
user text in core. This command permits either additions to user-
typed text or -- if entered after a START or RESTART com-
mand -- entry of a complete, previously saved program.

If no unit is specified, the system will assume the tape is to be
loaded from the user teletype terminal paper tape reader and will
automatically start the tape motion and read the tape.

If a tape number (a number from 1 to 32) is specified, it identifies
a logical cassette tape from which the program will be loaded. The
currently positioned file will be read. Optionally, if a / and a file
number follow the tape number, the tape will be rewound and
skip n—1 files before reading (where n is the specified file number.)

A disk file will be read if unit equals a disk file name. A disk file
name is a string of up to 8 characters enclosed in quotes (i.e.,
“MASTER" or “FILE34").

LOAD (Load from Teletype)
LOAD 2 (Load from cassette number 2, current file)
LOAD 3/2 (Load from cassette number 3, second file)

LOAD '"MASTER" (Load from disk, file “MASTER"’)

19

BASIC SYSTEMS COMMANDS

RERUN (See RUN also)

Format

Purpose

Example

RERUN [line number]

There are two uses of the RERUN command: if a line number is
entered with the command, program execution will begin at the
referenced line number. Otherwise, program execution will start
at the lowest numbered program line.

The RERUN command causes the execution of the program to
occur without reinitiating program variables to zero; the variables
are maintained at the last calculated values. This differs from the
RUN command which initiates all variables to zero.

The entire text area will be scanned by the system. |f newly en-
tered common (COM statements) variables are encountered, an
error is assumed; such variables are, however, allowed for a RUN
command. New noncommon variables are established with values
of zero.

This implies starting at the lowest

RERUN ’ program line number.
OR
Rerun the program beginning with
RERUN 20 program beginning

program line 20.

20

BASIC SYSTEMS COMMANDS

RESTART (See START)

Format RESTART

Purpose This system command will reinitiate the entire user program area,
except that previously defined common variables (COM state-
ments) are not disturbed. All user program text and noncommon
variables are removed from the system, but names, attributes, and

values of common variables are not changed.

Example RESTART

21

BASIC SYSTEMS COMMANDS

RUN (See RERUN also)
Format

Purpose

Example

RUN

The RUN command initiates the execution of the user’s program.
The system verifies all numbers and entries; variables are scanned
for consistency; new (not previously entered) common variables
and all noncommon variables are reset to zero. The program state-
ments are then executed in line-number sequence.

RUN

22

SAVE

Format

Purpose

Example

BASIC SYSTEMS COMMANDS

SAVE unit
where unit is a tape cassette number and file, a disk file name,
or blank.

This system command will cause all program lines to be written on
disk or on the tape specified by the SAVE command. If the speci-
fied tape is not available, an error message is written and no action
is taken.

If no unit is specified, the system will assume the text is to be
punched on the user teletype terminal. Five inches of leader/
trailer code will be punched before and after the program text.
The user should manually turn the teletype paper tape punch on
and off during the period when the leader/trailer code is being
punched.

If a tape number (a number from 1 to 32) is specified, it identifies
a logical cassette tape on which the program will be written (at
the currently positioned file).

Optionally, if a / and a file number follow the tape number, the
tape will be. rewound and skip n—1 files before writing (where n
is the file number). In this case, all subsequent files on the tape
will be destroyed.

The program will be written on a disk file if unit equals a disk file
name. Disk file names must be enclosed in quotes (i.e., “"MASTER"
or “FILE34"). If more than one disk storage unit (1024 charac-
ters) are required. The number of storage units needed must be
specified by following the file name with a / and the number
needed (i.e., “MASTER"’/4 indicates that 4 storage units of 1024
characters are required).

SAVE (Punch on teletype)
SAVE L (Write on cassette number current file)
SAVE 3/4L (Write on cassette number 3, fourth file)

SAVE "MASTER''/L (Write on disk, 4 storage units)

23

BASIC SYSTEMS COMMANDS

START (See RESTART also)
Format

Purpose

Example

START
The START command will reinitiate the entire user program area.
All previously stored program text and both common and non-

common variables are removed from the system.

START

24

BASIC STATEMENTS

BASIC STATEMENTS

A BASIC statement is a special verb or word followed by an ex-
pression, variables, or numbers. For example:

READ A, B ———A statement: verb followed by variables
DATA 1, 4 ———A statement: verb followed by numbers

LET A = b6*B — A statement: verb followed by a variable (A), an
equals sign, and an expression (6 * B).

There are two types of BASIC statements: executable and non-
executable. An executable statement specified program action:

READ A, B
LET A = 6%B

A nonexecutable statement provides information for program
execution:

DATA 1, &4
or for the programmer:

REM THIS IS PROGRAM 1

A series of statements, separated by colons, may be entered on
one line — with one line number. For example:

20 FOR I = 1 TO 10: PRINT I,XCID®Y: NEXT I

BASIC statement lines must always begin with a line number;
statement lines for immediate execution do not.

25

BASIC STATEMENTS

Com

Format

Purpose

Example

COM 3 scalar variable% [g scalar variable %]

array variable ") array variable U
The COM statement allows a program to store information in
memory for use in a subsequent program or to use information
from a previous program. It provides array definition identical to
the DIM statement for array variables; on the other hand, the

syntax for one COM statement can be a combination of array
variables (A(10), B(3,3)) and scalar variables (C2,D).

The common area variables must be defined before any other
variable in the program is defined. Therefore, COM statements
must be assigned the lowest executable line numbers in the
program.

The following general rules apply to the COM statement:

1. It must be the first executable program line(s)
in a program.

2. It must be used with identical attributes in a pre-
vious or subsequent programs.

3. Subsequent programs are initiated by a RE-
START command.

4. It cannot be added to a program prior to a RE-
RUN command.

10 coM A(10), B(3,3), C2
20 CoM C,D(4, 14D, E3, F(6)

26

BASIC STATEMENTS

DATA (See READ and RESTORE also)

Format

Purpose

Example

DATA n [3 ,ng]
where n is a number.

The DATA statement provides the values to be used by the vari-
ables in a READ statement. The numbers entered with the DATA
statement are in the order that they are to be used. If several
DATA statements are entered, they are used in order of state-
ment number.

4O DATA L4, 3, 5, 6

27

BASIC STATEMENTS

DEF

Format

Purpose

Example

DEF FNa(v) = expression

where a is a letter or digit which identifies the function and v is a
scalar variable (a letter or a letter followed by a digit).

The DEF statement defines a user’s unique functions. The follow-
ing program lines illustrate how DEF is used.

010 X = 3

020 DEF FNA(Z) = 712 - Z
030 PRINT X +FNAC2%X)
o4O END

Processing:

Evaluate the expression for the scalar variable. (i.e., 2*X)

Find the FN.

Set the scalar variable equal to the evaluated expression value. (i.e., Z=2*X)
Evaluate the FN expression. (Z12-2)

The above example would print the value 33: 3+(612-6).

The DEF statement may be entered anyplace in the program,
and the expression may be any formula which can be entered on
one line. A function cannot refer to itself; it can, on the other
hand, refer to other functions. Up to five levels of function nesting
are permitted. Two functions cannot refer to each other (an end-
less loop). A reference cannot be made to an outside DEF FN
statement from an immediate execution mode statement. The
scalar variable used in a DEF statement is called a dummy vari-
able. It may have a variable name identical to a real variable used
elsewhere in the program or in other DEF statements; current
values of these variables will not be affected during FN evaluation.

60 DEF FNACC)
70 DEF FNB(A)
80 DEF FN4(C)

(3*A) - 8/C+FNB(2-A)
(3*A) - 9/C
FNB(C) *FNA(2)

28

DIM
Format

Purpose

Example

BASIC STATEMENTS

DIM array variable D , array variable%]

This statement reserves space for single or double-dimension array
variables which will be referenced in the program. Space may be
reserved for more than one variable with a single DIM program line
by separating the entries for array name and integer with commas,
as shown in the example below.

DIM statements must appear before any use of the variable in the
program, and the space to be reserved must be explicitly indi-
cated — expressions are not allowed.

The following rules apply to the use and assignment of array
variables in a DIM statement.

1. The numeric value of the first subscript must be
1; zero is not allowed.

2. The dimension(s) of an array cannot exceed
255,

20 DIM I(45)——>Reserves space for a single-dimension array of 45

elements

30 DIM J(8,10) — > Reserves space for a double-dimension array of 8

rows and 10 columns

40 DIM K(35), L(3), M(8,7) ———>Reserves space for two single-

dimension and one double-
dimension array

29

BASIC STATEMENTS

END
Format

Purpose

Example

END

This is an optional statement: It indicates the end of a BASIC
program. It need not be the last executable statement in-a
program. An ‘END PROGRAM’ is typed by the system when
this statement is executed, and the system then awaits subsequent
user action.

990 END

30

FOR (See NEXT also)

Format

Purpose

Example

BASIC STATEMENTS

For scalar variable = expression TO expression [STEP exnression] ;
i.e.,

FOR V = X TO Y STEP Z

This statement — and the NEXT statement — are used to specify a
loop. The FOR statement is used at the beginning of the loop; the
NEXT statement at the end. The program lines in the range of the
FOR statement are executed repeatedly, beginning with V = X:
thereafter, V is incremented by Z until the value of V passes the
limit specified by Y. The STEP portion of the statement may be
positive or negative or may be omitted. If omitted, a step size of
+1 is assumed. Loops may be nested with no limit.

If illegal values are assigned to the variables in a loop or if the loop
designated by STEP is in the wrong direction or 0, the loop is
executed once only and the program is continued. Examples of
invalid values may be:

FOR R = 1 TO 10 STEP -1
FOR R = -1 TO -10 STEP 1
FOR"R = 1 TO 10 STEP O

A loop is executed to completion only if the values assigned the
variables are valid. The following restrictions apply to the use of
FOR loops

1. Branching into the range of a FOR loop from
outside is not permissible (GO TO, GOSUB,
IF-THEN).

2. Branching out of the range of a FOR loop is per-
missible, however, to conserve table storage, it
should not be done repeatedly unless a subse-
quent normal terminating of an outer loop oc-
curs or unless the loop is completely contained
in a GOSUB routine. (GO TO, IF-THEN only,
returning GOSUB branches are always legal).

20 FOR X = 1 TO 50
30 PRINT X, SQR(XD
4O NEXT X

OR

20 FOR Z3=A(K) TO -COS(J) STEP -8 + INT(P(2))
30 R(Z3) = ACK) + A(Z3)

4O FOR Z4=R(Z3) TO ACK) : Q(Z4) =2%ZL*R(Z3)
50 PRINT Q(Z4),"VALUE", FN6(Q(Z4))D

60 NEXT ZU4: NEXT Z3

31

BASIC STATEMENTS

FOR (continued)

FOR Loop
within a
GOSuB
routine

50
[&
70

90

100
110

120

150
160

200
300
340

390

GO TO 70
FOR I = 1 TO 10 STEP 2
LET z(ID) = FNACID-LOG(CI)
NEXT I

FOR J =1 TO 4

FOR K =1 TO 6

IF Z(K)>10 THEN 160

NEXT K

NEXT J

GOSUB 300

FOR X = .1 TO Z STEP .05

ooooo

NEXT X
RETURN

lllegal
I—Branch
FOR Loop

Proper branches
—out of a
FOR Loop

32

—

GOSUB (See RETURN also)

Format

Purpose

Example — Single GOSUB:

10
=20
30
Lo
50

L 90

BASIC STATEMENTS

GOSUB line number

The GOSUB statement is used to specify a transfer to the first pro-
gram line of a subroutine. This first program line may be any
BASIC statement, including a REM statement to explain that this
is the beginning of a subroutine. The logical end of the subroutine
is a RETURN statement which directs the system to the verb fol-
lowing the last executed GOSUB; the RETURN statement must be
the last executable statement on a line, but may be followed by
non-executable statements as shown below:

120 X = 20: GOSUB 200: PRINT X
125 --

200 REM SUBROUTINE BEGINS

210 RETURN: REM SUBROUTINE ENDS

The GOSUB statement may be used to perform a subroutine
within a subroutine — a ‘nested’ GOSUB. This statement may not,
however, be used to transfer within a FOR loop where a NEXT
statement will be encountered before RETURN is encountered.

Use of a GOSUB is not permitted in the immediate execution
mode.

GOsSuUB 30
PRINT X: STOP

REM THIS IS A SUBROUTINE =

+— The subroutine

RETURN: REM END OF SUBROUTINE When RETURN is encountered,

the system returns to the verb
following the last executed
GOSUB.

33

BASIC STATEMENTS

GOSUB (continued)

Example — Nested GOSUBS:

10
— 20
30
40
50

70

> 30
90
100
110

150

1- 200

GOSUB 30
READ Q: STOP
REM THIS IS A SUBROUTINE

- ==The subroutine

GOSUB 150
PRINT Q

RETURN: REM END OF SUBROUTINE 30

REM THIS IS A NESTED SUBROUTINE _—?
|

- A ‘nested’ subroutine J|
|

RETURN: REM END OF NESTED SUBROUTINEJ

Example — lllegal GOSUB transfer into FOR loop

500
FOR | 700
Loop

750

760

770

GOSUB 750

FOR I = 20 TO 50

LRI Y

LET ACI) = LOG(12%A) - Z(I)=-

NEXT I
RETURN I

A RETURN

within the

‘nested’ subroutine
directs the system
back to the verb
following the
GOSUB for the
‘nested’ subroutine.

NEXT statement occurs before RETURN

BASIC STATEMENTS

GO TO

Format GO TO line number

Purpose This statement is used to transfer to another area of the program.
The GO TO directs the system to the line number where process-
ing is to continue
Use of this statement is not allowed in the immediate execution
mode.

Example 50 GO TO 10

35

BASIC STATEMENTS

IF

Format

Purpose

Example

IF expression relational operator expression THEN line number.

where the relational operatoris <, < =,=, > =, > <>
(3315 Teletype) or < , < ,=,%#, >, > (3310 1/0 Writer)

This statement causes the system to skip the normal sequence of
program lines and go to the line number following THEN, pro-
vided certain conditions are met. Quite simply, this may be de-
scribed as a conditional GO TO statement, which compares the
value of two expressions.

If the value of the first expression in the IF statement is in the
specified relationship to the second expression, the system goes
to the line number designated by THEN. If the specified relation-
ship is not met, the program will continue in sequential order.

IF cannot be used in an immediate execution mode line.

4O IF A < B THEN 35
50 IF A # B THEN 70

36

J

INPUT
Format

Purpose

Example

BASIC STATEMENTS

INPUT variable [{, variable } ...]

This statement allows the current user to supply numeric data
during the running of a program already stored in memory. For
example, if the original programmer wants the user to supply the
values for A and B while running the program, he enters, for
example,

4O INPUT A, B

before the first program line which requires either of these values.
When the system encounters this INPUT statement, it types the
word INPUT and a colon on the following line and waits for the
user to supply the two numbers. The program then continues.
(It is common practice to identify requested variables by a pre-
ceding PRINT statement.)

Each number must be entered in the order in which it is to be
used. If more than one number is entered on a line, each must be
separated by a comma. Several lines may be used to enter the re-
quired INPUT data.

If there is a system-detected error in the entered data, the numbers
must be re-entered beginning with the erroneous number. The
numbers which precede the error are accepted.

A user may terminate an input sequence without supplying all the
required input values by simply typing in a carriage return with no
other information preceding it on the line. This will cause the sys-
tem to immediately proceed to the next program statement. The
INPUT list variables which have not received values will remain
unchanged.

10 INPUT A,B —————> Program Statement Executed
INPUT ———— System Typeout
-3, 15 ——————— User response

37

BASIC STATEMENTS

LET

Format

Purpose

Example

[LET] variable [{,variable}] = expression

The LET statement directs the system to perform certain compu-
tations and to assign the results to the variable or variables speci-
fied. The expression to the right of the equal sign is evaluated
first.

The word LET is, however, optional. If it is omitted, its purpose
is assumed.

LO LET X(3), Z,Y=P+15/2+SIN(P-2.0)
OR

50 LET J=3
OR

10 X=A®E-ZXY =* Here LET is assumed

38

NEXT (See FOR also)
Format

Purpose

Example

BASIC STATEMENTS

NEXT scalar variable

The NEXT statement signals the end of a loop begun with a FOR
statement. The variable in the FOR statement and in its related
NEXT statement must be the same.

During execution NEXT causes the referenced FOR statement
index variable to be stepped. If the limit is not exceeded, transfer
is made to the statement following the referenced FOR statement.
If the limit is exceeded, the next sequential statement is executed.

In immediate execution mode, the NEXT statement and its corre-
sponding FOR statement must both be in the immediate execu-
tion statement line.

30 FOR M=2 TO N-1 STEP 30: J(M)=I(M)*t2
4O NEXT M

50 FOR X=8 TO 16 STEP 4
60 FOR A = 2 TO 6 STEP 2
65 LET B(A,X) = B(X,A)
70 NEXT A

80 NEXT X

Nested Loop

39

BASIC STATEMENTS
PRINT

Format

Purpose

PRINT print element [{t print element }]

where a print element is an expression, TAB (expression), a text
string in quotations or blank. t is a comma or semicolon.

Printing may be done in zone-form which is signaled by a comma
or packed form which is signaled by a semicolon.

Zone-form:

Packed-form:

PRINT print element [{ print element } :I

The teletypewriter line is divided into 4 zones of
18 characters each, columns 0-17, 18-35, 36-53,
54-69. Each zone is 18 characters in length except
for the last zone which is 16 characters in length.
Selectrics will have two additional zones, columns
72-89, 90-107.

A comma signals that the next print element is
to be printed starting in the next print zone, or if
the final print zone is filled, then the first print

~ zone of the next line.

For example:

10 X=214,230 :Y=3564 :Z=-,2379
20 PRINT X,Y,Z

will result in the print out of the following:
214,23 3564 -.2379
PRINT print element [{ ; print element }]

A semicolon signals that the next print element is
to be printed immediately following the last print
element, unless the last print element is an expres-
sion in which case a space is inserted between the
value of the expression and the next print element.

For example:

10 X=2 :Y=3.4
20 PRINT '"X="';X;"'Y="";Y

will result in the print out of the following:

X= 2 Y==3.4

A print statement can contain both comma and semicolon ele-
ment separators. Each separator explicitly determines the amount
of space skipped before the subsequent element is printed. A
comma will cause advancement to the beginning of the next zone.

40

PRINT (continued)

BASIC STATEMENTS

A semicolon will cause 1 or no spaces to be skipped (depending
upon whether the previous element was a variable or text string).

For example:

10 X=2 :Y=3 :7=-4.2
20 PRINT "XZ";X,"Y=";Y,-"Z:";z

will result in the following print out:

X= 2 Y= 3 Z=-4,2

The end of a print line signals a new line for output, unless the
last symbol is a comma or semicolon. A comma signals that the
next print element encountered in the program is to be printed in
the next zone of the current line. A semicolon signals that the
next print element is to be printed in the next available space,
skipping 1 space if the last print element was an expression.

For example:

10 PRINT "X="';
20 PRINT 3.2970,
30 PRINT "Y='';64

will cause the following print out:

X= 3.297 Y= bh

PRINT with no print element advances the paper one line, or it
causes the completion of a partially filled line.

Values of expressions are printed in one of two formats:

Format1: SM.MMMMMMME XX 1o"1>VAL_UEz_1o'F8
Format2: SZZZZ.FFFF 10-1< VALUE < 10+8

where M = mantissa digits
X = exponent digits
F = fractional digits
Z = integer digits

S

= minus sign of value < 0, or blank if value >0.
In format 2, the decimal point is inserted at the proper position

or omitted if the value is an integer. Leading integer digit zeroes
and trailing fractional digit zeroes are omitted.

41

BASIC STATEMENTS

PRINT (continued)

The following are examples of the printing of variables in the
two formats:

Format1: 2.347621L4E-09
-1.6472000E+22

Format2: 23.479
-.6374
0
-421

TAB (expression): This function permits you to specify tabulated
formatting. For example, TAB (17) would cause the typewriter
to move to column 17.

Positions are numbered O to 69 (3315 Teletype) and O to 107
(3310 1I/O Writer). The value of the expression in the TAB func-
tion is computed, and the integer part is taken. The typewriter is
then moved to this position. If it has already passed this position,
the TAB is ignored. If the value of the expression is greater than
69 for the 3315 Teletype or greater than 107 for the 3310 1/0
Writer, the typewriter will move to the beginning of the next line.
Values of TAB expressions greater than 255 are illegal.

For example:

10 FOR I=1 TO 5
20 PRINT TAB(ID;I
30 NEXT 1

will cause the following print out:

42

J

RANDOM

Format

Example

BASIC STATEMENTS

The RANDOM statement can be used in conjunction with the
RND function to produce different sets of random numbers. For
example, if RANDOM is the first instruction in a program using
random numbers, then each time the program is executed a dif-
ferent set of random numbers will be used. Omitting the RANDOM
statement will cause the ‘““standard’’ set of random numbers to be
used. Generally, when debugging a program which uses random
numbers, the RANDOM statement is omitted so that the same re-
sults will be produced each time the program is executed.

10 RANDOM

20 FOR I=1 TO 100
30 PRINT RND(X),
LO NEXT 1

43

BASIC STATEMENTS

READ (See DATA and RESTORE also)

Format

Purpose

Example

READ variable [{ , variable } . .]

The READ statement is used to assign to variables the values con-
tained in a DATA statement. Neither statement can be used with-
out the other. The READ statement causes the variable(s) listed in
it to be given, in order, the sequentially available numbers in the
DATA statement(s). Numbers are retrieved from a DATA state-
ment as they occur on that program line. If a READ statement
references beyond the limit of existing numbers in a DATA state-
ment, the system looks for another DATA statement in statement
number sequence. If there are no more DATA statements in the
program, an error message is written and the program is terminated.

READ statements customarily occur near the beginning or end of
a program; DATA statements may be entered anyplace as long as
they provide values in the correct order for the READ statements.

100 READ A, B, C, Al, B, Cl

220 DATA 4, 315, -3.98, -174
230 DATA 5.62E - 3, -3.14158

44

REM

Format

Purpose

Example

BASIC STATEMENTS

REM text string

where ‘text string’ is any group of typewriter characters (exclud-
ing carriage return, colon, backspace, etc.)

This statement provides a way to insert comments or explanatory
remarks in a program. When the computer encounters a REM
statement it ignores the remainder of the line — thus permitting
the programmer to use the statement for his own purposes.

200 REM THIS IS A SUBROUTINE FOR ENTERING DATA

210 REM ENTER DATA IN PRESCRIBED ORDER
220 REM THE FIRST NUMBER MUST BE N

45

BASIC STATEMENTS

RESTORE (See READ and DATA also)
Format RESTORE [integer]

Purpose The RESTORE statement allows the repetitive use of DATA state-
ment values by READ statements. When RESTORE is encountered,
the system returns to the nth DATA value; this value is that of the
integer if one is included in the RESTORE statement; otherwise,
it is assumed to be the first DATA number. Then when a subse-
quent READ statement occurs, the data will be read and used —
beginning with the nth specified number — all over again.

Example 100 RESTORE =——————Start with the first DATA number.
OR
100 RESTORE 11 —————Start with the 11th DATA number.

BASIC STATEMENTS
RETURN (See GOSUB also)

Format RETURN

Purpose The RETURN statement is used in a subroutine to return process-
ing to the statement following the last executed GOSUB.

Example See example for GOSUB.

47

BASIC STATEMENTS

STOP
Format

Purpose

Example

STOP

The STOP statement causes the program execution to terminate.
There can be several STOP statements within a program.

When STOP is encountered, the system types

3300 BASIC READY

to return the system to the user.

100 STOP

48

TRACE

Format

Purpose

BASIC STATEMENTS

TRACE {ON }
OFF

The TRACE statement provides for the tracing of the execution
of a BASIC program. TRACE mode is turned on in a program when
TRACE or TRACE ON is executed and turned off when TRACE
OFF is executed. When the TRACE mode is on, printouts will be
produced when:

Any program variable receives a new value during
execution (LET, READ, FOR statements).

A program transfer is made to another sequence of
statements (GO TO, GOSUB, IF)

For example:
30 LET X, Y, Z(5)=A+SIN(B)/C
will produce‘the TRACE printout:
X=Y=12C)=29.631
For example:

4O READ A, B, C(22), D

will produce:

A=9.4
B = 64.27
C = .37492000 E+11
D = 99.4
For example:

100 GO TO 200
will produce:
TRANSFER TO 0200

For example:

30 GOSUB 10
will produce:

TRANSFER TO 0010

49

BASIC STATEMENTS

TRACE (continued)

The following examples show the format printed for BASIC state-
ments when the TRACE feature is being used:

LET: variable = variable = ... = received value
READ: variable = received value

FOR: variable = next index value

where ‘received value’ and ‘next index value’ are
printed in the same format that is used in PRINT
statements.

GO TO, GOSUB, IF: TRANSFER TO XXXX
where X XXX is a line number.

Example 100 TRACE
110 IF X = 15.1 THEN 150
120 LET X, Y = 12.1 + 3
130 GO TO 110
140 TRACE OFF
150 STOP
RUN

Resulting printout:

X =Y =15.1

TRANSFER TO 0110
TRANSFER TO 0150
3300 BASIC READY

50

EXTENDED BASIC STRUCTURE
AND COMPONENTS

EXTENDED BASIC STRUCTURE AND COMPONENTS

Wang 3300 EXTENDED BASIC is an extension of Standard
BASIC and includes all the structure and components of Standard
BASIC. It can be run on most 3300 systems but requires a slightly
larger memory configuration than Standard BASIC. The language
components unique to EXTENDED BASIC are described in this
section. A summary of these features is presented below.

Summary of EXTENDED BASIC Features:

Alphanumeric String Variables

Alphanumeric String Variables and Literal Strings.

An additional function, STR, which permits substringing of
string variables.

Fourteen Matrix Operation Statements including:

MAT Equality MAT CON

MAT Addition MAT ZER

MAT Subtraction MAT IDN

MAT Multiplication MAT READ

MAT Scalar Multiplication MAT INPUT

MAT INV (lInverse, Determinant) MAT PRINT

MAT TRN (Transpose) MAT PRINT USING

Automatic Dimensioning and Redimensioning of Matrices.
Program specifiable matrix redimensioning.

Nine data file operation statements applicable to Teletypes,
cassettes, or disk:

FILES IF END
FILEREAD FILEEND
FILEWRITE FILEMOD
MAT FILEREAD FILESAVE

MAT FILEWRITE

PRINT USING statement — to flexibly format printed variables
and lines.

Conditional GO TO statement.

CHAIN statement — to automatically link and run program
steps.

Wang 3300 Extended BASIC provides for an additional form of
variable, the alphanumeric string variable. It is distinguished from
numeric variables by the manner in which it is named, a letter
followed by a $. String variables permit the user to input, process,

51

EXTENDED BASIC STRUCTURE
AND COMPONENTS

Alphanumeric String Variables (continued)

J

output and print alphanumeric strings of characters, (such as
names, addresses and report titles). The following general forms
are used to represent alphanumeric string variables:

Scalar string variable

‘letter’ $ (i.e., A$, BS)
One-dimensional string array

‘letter’ $ (d1) (i.e., A$(3),B$(N))
Two-dimensional string arrays

‘letter’ $ (d1,d2) (i.e., A$(2,3),B$(N,M))

Each string variable or string array element is initially assigned a
value of 1 blank character. Thereafter, it can take the value and
length of any alphanumeric character string up to 18 characters in
length, which is received in a program statement. If a string vari-
able receives a string value of less than 18 characters, it will reflect
that shorter length in all subsequent operations until it receives
another value.

For example,

10 LET AS$="ABCD"
20 PRINT AS

will cause a print out of 4 characters: ABCD. J

The dimensions of string arrays must be specified in a DIM or
COM statement prior to their use in the program. They may, how-
ever, be redimensioned when used with the following matrix oper-
ation statements:

MAT INPUT, MAT READ, MAT FILEREAD.

(Refer to the section describing matrix operations.)
Alphanumeric Literal String
An alphanumeric literal string is a character string enclosed by

double quotation marks. It is used in conjunction with string
variables to provide a string value within a BASIC statement.

For example,

10 LET AS$="'ABCD"
20 IF BS$ < "#XYZ" THEN 100
30 PRINT '"NAME='';A$

52

EXTENDED BASIC STRUCTURE
AND COMPONENTS

Alphanumeric Literal String (continued)

Literal strings may be any length that can be expressed on one
program line. However, when they are used in conjunction with
string variables, they will be truncated to 18 characters, the maxi-
mum length permissible for string variables.

For example:

LET A$="ABCDEFGHIJKLMNOPQRST"

In this statement A$ will only receive the first 18 characters of the
literal string, i.e., ABCDEFGHIJKLMNOPQR.

Statements in which String Variables are Permissible

Alphanumeric string variables can be used in the BASIC statements
listed below. Literal strings can generally be used in place of string
variables, except where a value is received.

LET LET A$=B$(2)

AS="'ABCD"
IF IF A$=B$ THEN 100

IF A$ <'"DR'" THEN 200

IF "ABCD" >B$ THEN 300
INPUT INPUT A$,BS(4)
READ READ C$,D$,ES(1,2)
FILEREAD FILEREAD #0,A$,B$
MAT INPUT MAT INPUT AS,BS (A$, BS are arrays)
MAT READ MAT READ AS$,BS (A$, BS are arrays)
MAT FILEREAD MAT FILEREAD #0,AS,BS (A$, B$ are arrays)
PRINT PRINT AS,B$,""ABCD"
PRINT USING PRINT USING 50,A$,BS,'""LAST"
MAT PRINT USING MAT PRINT USING 60,AS$,BS (A$, B$ are arrays)
FILEWRITE FILEWRITE #2,AS,"GROUP1"
MAT FILEWRITE MAT FILEWRITE #3,A$,BS (A$, B$ are arrays)
DATA DATA "ABCD", "EFGH"

STR (String Function)

Wang 3300 Extended BASIC provides a function which permits the
user to extract, examine, compare or replace a specified portion of
an alphanumeric string. The STR function operates on alpha-
numeric string variables, and can be used in any BASIC statement
where alphanumeric variables are permissible. It has the following
format:

STR (string variable, X1 [,Xz])

where X1{ = Starting character in string (an integer)

X2 = Number of consecutive characters (an integer)
(The specification of X2 is optional)

53

EXTENDED BASIC STRUCTURE
AND COMPONENTS

STR (String Function) (continued)

Matrix Operations

For example,

STR(AS,3,4)

Means take the 3rd, 4th, 5th and 6th characters of AS$.

STR(AS, 3)

Means, starting with the 3rd character, take the remainder of the
string A$.

When STR functions are used, they replace alphanumeric string
variables and specify the portion of the string variable to be used.
They may be used on either side of an equal sign or relation.

The following examples illustrate use of the string function:

Assuming B$=""ABCDEFGH"

10

20

30

Lo

50

A$=STR(BS, 2,4) ——— AS$ is set to “BCDE"".

STR(CAS, 4)=B$ ~—— Characters 4 through 18 of
AS$ are set to
“ABCDEFGH".

STR(AS, 3,3)=STR(BS, 5, 3) ——= The 3rd, 4th and 5th char-
acters of A$ are set to
“EFG".

IF STR(BS$, 3,2)="AB" THEN 100--- Characters “CD" of B$ are

compared to the literal
string ““AB"’.

READ STR(A$,9,9) ——— Characters 9 through 18 of
AS$ receive the next data
statement value.

Wang 3300 Extended BASIC contains sixteen matrix operation
statements. They allow the user to perform matrix algebra, input/
output, and print arrays in a single program statement.

In general, the MAT (matrix) statements follow the conventions
of matrix algebra. Single dimension arrays are treated as column
vectors.

EXTENDED BASIC STRUCTURE
AND COMPONENTS

Matrix Operations

The MAT statements are generally similar to other BASIC state-
ments but have the following unique syntax rules:

1. Each matrix statement begins with the word “MAT"".

2. The variables used in matrix statements must always
be array variables. They are always expressed without
subscript notation.

3. A number of the MAT statements can result in a re-
dimensioning of the receiving array variable. In some
statements, it is done by supplying the new dimensions
in the statement; in others, it is implicit.

The following matrix operation statements are available in Wang
3300 Extended BASIC:

MAT Addition (Set Matrix = Matrix + Matrix) - MAT A=B+C

MAT CON (Set Elements of Matrix = 1) - MAT A=CON

MAT Equality (Set Matrix = Matrix) - MAT A=B

MAT IDN (Set Matrix = Identity Matrix) - MAT A=IDN

MAT INV (Set Matrix = Inverse of Matrix) - MAT A=INV(B)

MAT Multiplication (Set Matrix = Matrix * Matrix) - MAT A=B¥C

MAT READ (Set Matrix = DATA values) - MAT READ A,B

MAT Scalar (Set Matrix = Scalar * Matrix) - MAT A=(X)*B

Multiplication

MAT Subtraction (Set Matrix = Matrix — Matrix) - MAT A=B-C

MAT TRN (Set Matrix = Transpose of Matrix) -- MAT A=TRN(B)

MAT ZER (Set Elements of Matrix = 0) - MAT A=ZER

MAT INPUT (Receive Matrix Element from - MAT INPUT A,B
Terminal)

MAT PRINT (Print elements of a Matrix) -~ MAT PRINT A,B

MAT PRINT USING (Print Matrix Using format = MAT PRINT USING 10,A,B
statement)

MAT FILEREAD (Input Matrix elements from - MAT FILEREAD #0,A,B

MAT FILEWRITE

Array Dimensions

a File)
(Write Matrix elements onto a File) - MAT FILEWRITE #0,A,B

In both Standard and Extended BASIC, the dimensions of all ar-
rays must be defined in a DIM or COM statement before they are
used in a subscripted fashion in the program.

In Extended BASIC, however, if an array variable which has not
been given any original dimensions is encountered in a MAT
statement, it will automatically be defined as a two-dimensional
array with dimensions of 10 by 10.

55

EXTENDED BASIC STRUCTURE
AND COMPONENTS

Array Redimensioning

There are several ways in which arrays can be redimensioned
during program execution in Extended BASIC. A matrix may be
redimensioned by appending new dimension(s), enclosed in paren-
theses, to array name(s) in any of the following MAT statements:

Matrix CON example, MAT A=CON(C4,2)

Matrix IDN example, MAT B=IDNC4, 4)

Matrix ZER example, MAT B=ZER(5)

MAT INPUT example, MAT INPUT A(3,3)

MAT READ example, MAT READ A(2,2),B(4,6)

MAT FILEREAD example, MAT FILEREAD #0,A(10)

In arithmetic matrix operations, the matrix on the left-hand side
of the equal sign is automatically redimensioned, receiving the
dimensions of the resulting matrix.

For example: 10 DIM AC20),B(2,2),c(2,2)
20 ...
30 ...

4O MAT A=B+C

The array A will be redimensioned from a vector of dimension 20
to a matrix of dimensions 2 by 2 by statement number 40.

It should be noted, however, that an error will result if a matrix is
redimensioned to a size in which the resulting total number of ele-
ments is greater than the total number of elements specified by its
original dimensions in the program. (Defined in a DIM or COM
statement, or 10 by 10 if not specified.)

For example, if array A is originally given the dimensions of 10
by 10 by the following statement:

20 DIM A(10,10)

Then it can be redimensioned to:
(9,11),(8,12), . . . etc., or to a vector, (100).

However, redimensioning to the following dimensions is illegal:

(10,11),(9,12),(8,13),... (101),(102),. ..

56

4

Matrix Arithmetic Restrictions

Data File Operations

EXTENDED BASIC STRUCTURE
AND COMPONENTS

Multiple matrix operations are not permitted in a single statement.

For example,

10 MAT C=A+B-D -<¢—————— illegal statement

is illegal. However, the following two statements can be used to
achieve the desired results:

10 MAT C=A+B
20 MAT C=C-D

The same array variable name cannot appear on both sides of the
equal sign in the following two matrix statements:

MAT Multiply
MAT TRN (Transposition)

Hence the following statements are illegal:

10 MAT C=C*A

20 MAT C=A%C .

30 MAT C=C¥C > illegal statements
4O MAT C=TRNCC) S

Wang 3300 Extended BASIC has nine Data File operation
statements:

FILES
FILEREAD

MAT FILEREAD
FILEWRITE
MAT FILEWRITE
IF END
FILEEND
FILEMOD
FILESAVE

FILEREAD statements allow a user to read data values from files
on teletype paper tape, cassettes, or disk and directly assign them
to BASIC program variables. Likewise, FILEWRITE statements al-
low the writing of variable values onto these devices, thus creating
data files. The other file statements facilitate setting up, assignment,
and termination of file operations in the program.

57

EXTENDED BASIC STRUCTURE
AND COMPONENTS

Data Files

Data File Format

Data files are sets of numeric and/or alphanumeric data which are
written and stored on paper tape, cassettes or disk. They are
created by the execution of one or more FILEWRITE statements
in a program. A data file contains a continuous set of variable
values resulting from the variables specified in the FILEWRITE
statements. For example:

10 FILEWRITE #0, A,Bl1,C,D$
20 FILEWRITE #0, E,F$,G3,H,"FILE1"

30 FILESAVE #0

The above statement will create a paper tape file containing the
current values of the variables A, B1, C, D$, E, F$, G3, H and the
literal string “FILE1".

All data files have an identical format. Numeric variables will be
stored in the Basic language format in which they appear in data
statements, input statement entries, and PRINT statement outputs,
(i.e., 23.421, 0, -10.2, 1.2345678E+27). Alphanumeric variables
will be written exactly as they are stored, a string of alphanumeric
characters, but they will be enclosed by quotation marks, (i.e.,
"“ABCD"”, “JOHN C. JONES").

Cassette, disk, and paper tape files are generated by the system.
Since files are in alphanumeric format, paper tape files can also be
generated off-line on a teletype in the following manner:

Key in each variable followed by a CR/LF/RUBOUT/RUBOUT.
An end of file is designated by an X-OFF/CR/LF.
A data file will appear on tape in the following manner:

.LEADER CODE (Blank Frames)
.VARIABLE #1 CR/LF/RUBOUT/RUBOUT
.VARIABLE #2 CR/LF/RUBOUT/RUBOUT

.VARIABLE #N CR/LF/RUBOUT/RUBOUT
.X-0OFF CR/LF
.TRAILER CODE (Blank Frames)

Logical File Designators and Logical Assignment

Files are always identified in a program by FILE designators. They
consist of a # character followed by a number.

For example: #1 (means file No. 1)
#4 (means file No. 4)

58

EXTENDED BASIC STRUCTURE
AND COMPONENTS

Logical File Designators and Logical Assignment (continued)

File Operation Restrictions

In BASIC

programs, #0 is always used to express the Teletype

terminal paper tape reader and punch. The other logical files used
in program statements (#1, #2, #3, etc.), are assigned either to a
particular cassette tape or disk by a FILES statement. Assignment
with a FILES statement is done in the program before any file
operations are encountered.

For example: 10 FILES 3,4/2,"COSTFILE"

This statement would produce the following file assignments:

#1
#2
#3

Cassette No. 3
Cassette No. 4, second file on the tape
A disk file named “COSTFILE"”

I n

. Up to 8 Disk or Cassette files can be assigned in a

program, (#1 through #8).

. An output file can be written and reread in the same

program, but it must be first terminated by a FILEEND
statement after it is written and before it is read.

. Both numeric and alphanumeric data can be contained

in the same file. However, when the data is read from
the file, numeric data must be assigned to numeric vari-
ables, and alphanumeric data must be assigned to alpha-
numeric variables. If data is read in mixed mode, an
error printout will result and the program will be
terminated.

. After all the data on afile is read, subsequent FILEREAD

operations for that file will be ignored. The file will have
an end of file status, which can be tested by an IF END
statement.

For example, assume a paper tape file has the values 1,2, 3, 40nit:

10
20
30

FILEREAD #0,A,B,C,D (Values read and assigned)
FILEREAD #O,E,F (Statement ignored, no more data)
IF END #0 THEN 100 (End of File branch will occur)

59

EXTENDED BASIC STATEMENTS

EXTENDED BASIC STATEMENTS

This section contains a complete description of the additional J |
statements available with EXTENDED BASIC. All STANDARD
BASIC statements described in previous sections are also pro-
vided within EXTENDED BASIC and are functionally identical.

As in STANDARD BASIC; EXTENDED BASIC allows:

Multi-statements on a single line separated by a colon.
For example,

100 MAT A=B+C :MAT PRINT A

The use of certain statements in immediate execution
mode. The following EXTENDED BASIC statements
can legally be used in immediate execution mode:

a) All matrix statements except:

MAT FILEREAD
MAT FILEWRITE
"MAT INPUT

MAT PRINT USING
MAT READ

b) Chain. J

Note — File operations are not legal in immediate execu-
tion mode.

60

CHAIN, CHAINR

Format

Purpose

Example

EXTENDED BASIC STATEMENTS

CHAIN[R][unit]

where unit = blank (Teletype paper tape reader)
1-16 (Cassette number)
“NAME" (Disk file)

This is a BASIC program statement which in effect produces an
automatic combination of the following:

STOP (stop current program)

START or (clear user area)
RESTART (clear user area saving Common Data)

LOAD (load new program)
RUN (runit)

This permits segmented jobs to be run automatically without
normal intervention. CHAINR is identical to CHAIN except the
RESTART function is selected instead of START (i.e., common
data is passed between programs).

CHAIN may be used in immediate execution mode; however, any
statements following CHAIN in the immediate execution line will
be ignored.

500 CHAIN
500 CHAINR
500 CHAIN 3

500 CHAINR "'PROGRAM2'

61

EXTENDED BASIC STATEMENTS

GOTO ON

Format GOTO statement no. [{ statement no. }] ON (expression)

Purpose Transfer is made to the ith statement specified in the list of state-
ment numbers if the truncated integer value of the expression is i.
If the value of the expression is less than 1, an error message is
printed out and program execution is terminated. If the value of
the expression is greater than the number of statements specified,
transfer is made to the next statement,

Example 55 GOTO 100,120,130, 140 ON (XXY+2)

62

PRINT USING

Format

Purpose

EXTENDED BASIC STATEMENTS

PRINT USING line number, print element [{t print element }...]

where a print element is an expression, string variable, or text
literal string in quotation marks; line number is the line number of
an image statement, and t is a comma or semicolon.

PRINT USING operates in conjunction with a referenced image
statement. |t causes print elements in the PRINT USING statement
to be formatted, inserted into the line image and printed. The image
statement provides both alphanumeric text to be printed between
the inserted print elements, and the format specifications for the
inserted print elements. The format for each print element is made
up of # characters to signify digits and optionally +, —, ., and !
characters to specify sign, decimal point position and exponent.
For example:

10 X=2.3 :Y=-27.123
20 PRINT USING 30,X,Y
30 % ANGLE=##.## LENGTH=+##.4

would result in the following printout:

ANGLE= 2.30 LENGTH=-27.1

If the number of print elements in the PRINT USING statement
exceeds the number of formats specified in the image statement,
the image statement is reused from the beginning for the remain-
ing elements. If a comma follows the first remaining print ele-
ment, a carriage return is issued before beginning the image state-
ment again; if a semicolon follows the first remaining element,
the carriage return is suppressed. The following examples illustrate
comma and semicolon separators:

10 X=1 :Y=2 :7=3
20 PRINT USING 30,X,Y,Z, (comma separators)

30 % #.4

1.0 (printout with

2.0 comma separators)
3.0

10 X=1 :Y=2 :Z=3%

20 PRINT USING 30,X;Y;Z; (semicolon separators)
30 % #.4

1.0 2.0 3.0 (printout with

semicolon separators)

63

EXTENDED BASIC STATEMENTS

PRINT USING (continued)

Print Element Format Rules

An image statement variable format has the following general
format:

{0 Lowen] [oen] o]

It can be classified into three general formats:

Format 1 — Integer e, #H#4, +HHEHHE, —##

Format2 — Fixed Point e, #H. 844, —#.H##4
Number

Format3 — Exponential e, HOoHHAITNY, S+ HH#IIIY

Print elements are formatted according to the following rules:
1. Numeric expression print elements:

a) If the format specification contains a plus sign, the true
sign of the expression is edited into the print line.

b) If the format specification contains a minus sign, a blank
for positive expressions or a minus sign for negative ex-
pressions is edited into the print line.

c) If the format specification has no sign and the expres-
sion is negative, a minus sign is edited into the print
line and the length of the format specification is in-
creased by one.

d) The expression value is printed according to the format
specified in the image statement.

Format 1-- the integer part of the value is printed,
truncating any fractions. Leading blanks
are inserted.

Format 2 -- the value is printed as a fixed point num-
ber, truncating or extending any fraction
with zeros and inserting leading blanks ac-
cording to the format specification.

Format 3 - the value of the expression is printed as a
floating point number. The mantissa is
formatted similar to a fixed point number
in Format 2 (with leading blanks and trail-
ing faction zeros). The exponent is always
printed in the 4 character form: ExXX.

PRINT USING (continued)

Examples

EXTENDED BASIC STATEMENTS

e) If the length of the value to be printed is less than or
equal to the length of the format specifications, the
value is right-justified. If the length of the value is
greater than the format specification, # characters are
edited into the print line rather than the value to indi-
cate the overflow.

Alphanumeric string variable or literal string print elements.

The value of a string variable or a literal string in quotation
marks is edited into the print line by replacing each charac-
ter in the format specification (including sign, #, decimal
point, and !) with the characters in the text string. The text
string is left-justified. If the text string is shorter than the
format specification, blanks are inserted on the right. The
text string is truncated on the right if it is longer than the
format specification.

For example:

100 PRINT USING 200,X,Y
200 % TOTAL SALES- #### VALUE- S#H###. 44

(Printout)
TOTAL SALES- 1242 VALUE- $73694.23

For example:

50 PRINT USING 100,C12.1,E
100 % COEFFICIENT= +.4##!!!! ERROR= —##!11!

(Printout)
COEFFICIENT= +.213E-04 ERROR= 23E-10

For example:

10 LET A=317.23%
20 PRINT USING 30,A
30 % +#.4##

(Printout)
HH### (Value too large for format)

For example:

10 LET A$=""JOHN DOE"
20 PRINT USING 30,A$
30% SALESMAN: ##########

(Printout)
SALESMAN: JOHN DOE

65

EXTENDED BASIC STATEMENTS

% — IMAGE STATEMENT (For Print Using)

Format

Purpose

Example

% 1 f‘[{tf}]

where t is a text string (not containing any # characters) or null,
and f is a format specification.

This statement is used in conjunction with a PRINT USING state-
ment to provide an image line for formatted output. The image
statement contains text to be printed and format specifications
used to format and insert print elements contained in the PRINT
USING statement.

The image statement may have any printable characters of text
inserted before and after print element format specifications. All
text characters preceding the last format specification used by a
print element will be printed. The image statement represents a
character by character image of what will be printed. Each format
specification is identified in an image statement by containing at
least one # character. # characters may be preceded by a sign
(+ or —) or a decimal point and followed by a decimal point or
four ! characters, all of which are interpreted as part of the for-
mat. Format specifications including the sign, decimal point and
exclamations cannot exceed 24 characters. The format specifica-
tion has the following general form:

[] {....####.####...} 1]

This can be classified into the following three formats:

Format 1 -- an optional sign followed by one or more # charac-
ters. For example, —# # #

Format 2 -- an optional sign followed by one or more # charac-
ters, a decimal point, and zero or one or more # char-
acters. For example, +# ## # #

Format 3 -- an optional sign followed by one or more # charac-
ters, a decimal point, zero or one or more # charac-
ters, and four exclamation marks. For example,

—## ## 1NN
100 % TOTAL SALES= S#if. ##
110 % ##. #4411
120 % +#######

66

EXTENDED BASIC STATEMENTS

MATRIX OPERATIONS
MAT Addition

Format MATc=a+b
where c, a, and b are numeric array names.

Purpose Adds two matrices or vectors of the same dimension. The sum is
stored in array c. Array ¢ may appear on both sides of the equal
sign.

An error message will be printed and execution will be terminated
if the dimensions of a and b are not the same. The resulting dimen-
sion of c is determined by the dimensions of a and b.

Example 10 DIM A5,
20 MAT A =

30 MAT E =

4o MAT A =

D)

m

D(5,5),E(7),F(5),G(5)

> T >w
+ + +~
>0 0

67

EXTENDED BASIC STATEMENTS

MAT CON Function

Format

Purpose

Example

MAT c = CON [(d1, [d2])]

where c is a numeric array name and d1, d2 are expressions speci-
fying new dimensions.

This statement sets all elements of the specified matrix to one (1).
Using (d1, d2) causes the matrix to be redimensioned to these
dimensions. If (d1, d2) is not used, the matrix has the dimen-
sions specified in a previous DIM statement or as redimensioned
in a previous MAT instruction.

10 MAT A=CONC10)
15 MAT C=CON(5,7)
20 MAT B=CON(51Q,S)
30 MAT A=CON

68

J

MAT Equality

Format

Purpose

Example

MAT a=b

EXTENDED BASIC STATEMENTS

where a and b are numeric array names.

This statement replaces each element of array a with a correspond-
ing element of array b. Array a is redimensioned to conform to
the dimensions of array b. Multiple equal statements such as
MAT A,B=C are not allowed.

10
20

30
4o

50
60

DIM A(3,5),B(3,5)
MAT A=B

DIM c(4,6),D(2,4)
MAT C=D

DIM E(6),F(7)
MAT F=E

69

EXTENDED BASIC STATEMENTS

MAT IDN

Format

Purpose

Example

MAT c = IDN Dd1[ﬂ2])]
where ¢ is a numeric array name and d1, d2 are expressions speci-
fying new dimensions.

This statement causes the specified matrix to assume the form of
the identity matrix. If the specified matrix is not a square matrix,
an error message is printed and execution is terminated.

Using (dq, dg) causes the matrix to be redimensioned to these
dimensions. If (dq, dg) is not used, the matrix has the dimensions
specified in a previous DIM statement or as redimensioned in a
previous MAT instruction.

10 MAT A=IDNC4,4)

20 MAT B=IDN
30 MAT C=IDNCX,Y)

70

MAT INPUT

Format

Purpose

Example

EXTENDED BASIC STATEMENTS

MAT INPUT array name |:(d1 I:,dz])] , { array name [(dm [,dn])J } ...

where d is an expression specifying a new dimension. Array name
is numeric or alphanumeric array.

The MAT INPUT statement allows the user to supply values via
the terminal for an array(s) during the running of a program. When
the system encounters a MAT INPUT statement, it prints the
word INPUT followed by a colon and waits for the user to supply
values for the arrays specified in the MAT INPUT statement. The
dimensions of the array(s) are assumed to be as last specified in
the program (by a DIM statement or as redimensioned in another
MAT statement) unless the user redimensions the array(s) by
specifying the new dimension(s) after the array name(s).

The values input are assigned to an array row by row until the ar-
ray is filled. If more than one value is entered on a line, the values
must be separated by a comma. Several lines may be used to enter
the required data. Excess data is ignored. If there is a system-
detected error in the entered data, the data must be re-entered be-
ginning with the erroneous number. The data which precedes the
error is accepted.

Entering no data on an input line (only a carriage return), signals
the system to ignore the remaining elements of the array currently
being filled. When alphanumeric string variable arrays are used in
the list, each element is reset to the length of the received string.
The input data must be compatible with the array, (i.e., numeric
input for numeric array, alphanumeric literal strings input for
alphanumeric arrays).

05 DIM A(2)
10 MAT INPUT A,B(2),C(2,4D

INPUT: -3, -5, .612, .41 (Values for A(1),A(2),B(1),B(2))

-6.2, -5.6, 98. (Values for C(1,1),C(1,2),C(1,3))
carriage return (Ignore rest of input for C)

With String Variable Arrays:

10 DIM C$(2)
100 MAT INPUT A$(4),B(2),C$

INPUT: "RAD", "DEG'", "MIN", "SEC", 2.5, 5.6
"LAST RESULT', "ROTATE"

7

EXTENDED BASIC STATEMENTS

MAT INVerse and the DET Function

Format

Purpose

Example

MAT c =INV(a)

where ¢ and a are numeric array names.

This statement causes matrix ¢ to be replaced by the inverse of
matrix a. Array ¢ may appear on both sides of the equal sign. The
dimensions of ¢ are determined by the dimensions of a. Matrix a
must be a square, non-singular matrix; otherwise, an error message
is printed and the program execution is terminated.

After inversion, the DET function equals the determinant of
matrix a.

10 DIM E(5,5), F(6,6)

LRI

200 MAT F=INV(E)
300 PRINT "DET OF E =", DET

Error Condition: (Matrix singular)

10 MAT E=ZER(3,3)
20 MAT F=INV(E)
YERROR 42

72

MAT Multiplication

Format

Purpose

Example

EXTENDED BASIC STATEMENTS

MATc=a*b
where c, a, and b are numeric array names.

The product of arrays a and b is stored in array c. Array ¢ may not
appear on both sides of the equal sign. If the number of columns
in matrix a does not equal the number of rows in matrix b, an
error message will be printed and execution will be terminated.
The resulting dimension of c is determined by the number of rows
in a and number of columns in b.

10 DIM A(5,2),B(2,3),C(4,7)
20 DIM E(3,4),F(4,7),6(3,7)
LO MAT G=E*F
50 MAT C=A*B
Error Condition: (Row and columns not compatible)
10 DIM A(2,2),B(4,4)
20 MAT C=A*B
’ 4+ ERROR 45

73

EXTENDED BASIC STATEMENTS

MAT PRINT

Format

Purpose

Example

MAT PRINT array name [t] [{array name [t]} .. :I
where t is a comma or semicolon.

The MAT PRINT statement prints the arrays in the order listed in
the statement. Each matrix is printed row by row. All the elements
of a row are printed on many lines as required with single line
spacing. A blank line is used to separate rows. The first element of
a row always starts at the beginning of a new print line. A matrix
is printed in zone-form (4 values per line) unless the array name
is followed by a semicolon, in which case the array is printed in
packed-form (see PRINT). A vector (1-dimensional array) is
printed as a column vector (double spaced).

10 DIM A(4),B(2,4),B$(10),C5(6D

100 MAT PRINT A; B, C$
200 MAT PRINT A, BS;

74

MAT PRINT USING

Format

Purpose

Example

EXTENDED BASIC STATEMENTS

MAT PRINT USING line number, array variable Bt array var.}..][t]

where line number is the statement number of an image statement
and t is a comma or semicolon.

This statement allows the formatted printing of arrays. It incor-
porates the functions of the MAT PRINT and PRINT USING
statements. The array elements are printed in the format(s) con-
tained in the image statement referenced in the MAT PRINT
USING statement. The image statement is reused in order to
output all the elements of the matrix. A trailing comma after the
array variable specifies that a carriage return will only be output
when the image statement is used up and must be restarted. For
most applications, a trailing semicolon will be used. With a
trailing semicolon (or blank), each matrix will be printed out row
by row with all elements of a row printed out on as many lines as
required with single line spacing. An additional blank line is used
to separate’ rows. At the beginning of each row, the image
statement is restarted. When trailing semicolons are used, rows of
matrices, with more than four elements, can be printed on a
single line in any specified format.

For example:

10 DIM A(2,5)

20 MAT FILEREAD #0,A

30 MAT PRINT USING L40O,A;
4O% +H. 41111

(Printout)

+6.2E-07 -1.3E-17 +7.3E-11 +1.2E-08 -3.9E-08
-4.9E-08 +6.9E-10 +8.4E-09 +5.2E-14 -5.4E-13

For example:

10 DIM B(3,2)

éO MAT PRINT USING 60,B
60% ANGLE= ###.## DEG ERROR= ## .##

(Printout)

ANGLE= 36.49 DEG ERROR= 5.21
ANGLE= 85.60 DEG ERROR= 11.92

ANGLE= 135.51 DEG ERROR= 8.61
75

EXTENDED BASIC STATEMENTS

MAT READ

Format MAT READ array name I:(d1 I:,dz]):l { array name [(dm [,dn])j| } .

Purpose

Example

where d is an expression specifying a new dimension. Array name
is a numeric or alphanumeric array.

The MAT READ statement is used to assign values contained in
DATA statements to array variables without referencing each
member of the array individually. The MAT READ statement
causes the arrays listed in it to be filled, in order, with the sequen-
tially available values in the DATA statement(s). Each array is
filled row by row. Values are retrieved from a DATA statement in
the order they occur on that program line. If a MAT READ state-
ment references beyond the limit of existing numbers in a DATA
statement, the system searches for the next sequential DATA
statement. If there are no more DATA statements in the program,
an error message is printed out and execution is terminated.

Alphanumeric string variable arrays can also be used in the list.
The information entered in the data statements must be compat-
ible with the array (i.e., numeric values for numeric arrays, alpha-
numeric literal strings for alphanumeric arrays).

The dimensions of the array(s) are assumed to be as last specified
in the program (by a DIM statement or as redimensioned in
another MAT statement) unless the user redimensions the array(s)
by specifying the new dimension(s) after the array name(s).

10 MAT READ A,B(2,3),c(9)

100 DATA 1,-.2,315,-.398,6.21,0,0

110 DATA 4,6,-.1201,5.62E-3,8.1,-.101
120 DATA .12,-1.7,0,-1,1,9,.871,4,-1

10 DIM A(2,2),B5(3,2)

20 MAT READ A,BS$,C(2),D$(4)

100 DATA 1,2.3,-3.4E12,5

110 DATA "ABC", "DEFG", "HI", Itdtl’ "KL", "MNO"
120 DATA .2345,1E-12,"AB","'CD", "EFGH", " TJK"

76

J

MAT Scalar Multiplication

Format

Purpose

Example

EXTENDED BASIC STATEMENTS

MAT c=(k) *a

where c and a are numeric array names and k is an expression.

Each element of matrix or vector a is multiplied by the value of
expression k and the product is stored in array c. Array ¢ may ap-
pear on both sides of the equal sign. The dimensions of c are
determined by the dimensions of a.

20 MAT C=(SINCXD)*A

30 MAT D=(X+Y12)%A
4O MAT A=(5)%A

77

EXTENDED BASIC STATEMENTS

MAT Subtraction

Format

Purpose

Example

MATc=a-b
where a, b, and ¢ are numeric array names.

Subtract matrices or vectors of the same dimension. The difference
of each element is stored in the corresponding element of c. Array
¢ may appear on both sides of the equal sign.

An error message will be printed and execution will be terminated
if the dimensions of a and b are not the same. The resulting dimen-
sion of c is determined by the dimensions of a and b.

10 DIM A(6,3),B(6,3),C(6,3),D(4),EC(H)

20 MATC=A-B
30 MATC=A-C
4LO MATD =D - E

78

MAT TRN (Transpose)

Format

Purpose

Example

EXTENDED BASIC STATEMENTS

MAT c¢=TRN(a)

where a and ¢ are numeric array names.

This statement causes array c to be replaced by the transpose of
array a. The resulting dimensions of ¢ are determined by the
transpose of a. Array ¢ may not appear on both sides of the equal
sign.

10 MAT C=TRNCA)

79

EXTENDED BASIC STATEMENTS

MAT ZER Function

Format

Purpose

Example

MAT c = ZER [(d1 [, d2])]

where ¢ is a numeric array name and d1, dp are expressions speci-
fying new dimensions.

This statement sets all elements of the specified matrix to zero.
Using (d1, do) causes the matrix to be redimensioned. If (dq,d9) is
not used, the matrix has the dimensions specified in a previous
DIM statement or as redimensioned in a previous MAT instruction.

10 MAT C=ZER(5,2)
20 MAT B=ZER

30 MAT A=ZER(F,T+2)
4O MAT D=ZER(20)

80

v 3

IF END

Format

Purpose

Example

EXTENDED BASIC STATEMENTS

DATA FILE OPERATIONS

IF END #N THEN statement number
where N is the file designator number.

The IF END statement is used to test for end of file condition fol-
lowing FILEREAD and MAT FILEREAD statements. If an end of
file was encountered on the last previous FILEREAD or MAT
FILEREAD statement for the designated file, then the IF END
statement will cause a transfer to be made to the specified state-
ment number.

100 FILEREAD #2, A, B, C
110 IF END #2 THEN 130

81

EXTENDED BASIC STATEMENTS

FILEEND

Format

Purpose

Example

FILEEND #N
where N is the file designator number.

The FILEEND statement is used to close or terminate an output
file that has just been written and must be reread in the same pro-
gram. It is also used to bypass the remainder of an input file.

The FILEEND statement causes the following action to occur for
each type of file and unit:

Output Paper Tape -------- An end of file is punched fol-
lowed by 50 blank frames.

Output Cassette Tape---—- An end of file sequence is written
and the tape isrewound and posi-
tioned at the start of the file.

Output Disk-------------------- An end of file is written and the
file is redefined as an input file.
The file pointer is reset to the
1st file element.

Input Paper Tape,
Cassette, Disk ---------- The remainder of the file is read
and ignored until an end of file
is encountered.

300 FILEEND #0
350 FILEEND #2

82

FILEMOD

Format

Purpose

Example

EXTENDED BASIC STATEMENTS

FILEMOD #N, JSCRATCH }

IINAMEII

where N is the file designator number

FILEMOD is used to remove a file catalogued on disk or to rename
it. If the word SCRATCH appears at the end of the statement, the

file is permanently removed from the disk. It can be renamed by
listing the new name enclosed by quotation marks.

100 FILEMOD #2, SCRATCH
200 FILEMOD #4, "FILE-C"

83

EXTENDED BASIC STATEMENTS

FILEREAD

Format

Purpose

Example

FILEREAD #N, variable, variable, . . .

where N is the file designator, (#1, #2, etc.) and variable is any
numeric or alphanumeric string variable or array variable element.

The FILEREAD statement causes data to be read from the desig-
nated file and sequentially assigned to each variable in the list.
Both numeric and alphanumeric data may be read in the same
FILEREAD statement, but the data assigned to each variable
must correspond to the variable type (i.e., numeric data for
numeric variables and alphanumeric data for alphanumeric
variables).

Values will be successively read from the file until all variables in
the list are satisfied. If a file is exhausted before all variables in the
list are satisfied, the remaining variables in the list are ignored and
successive |F END statements for the file will cause branching.

20 FILEREAD #0,A,B,C$,D(1,2),E$(kL, 1D
where_ the file might contain:

-3.249, 1.2E+20, "ABCD", 24.6, "EFGH"

84

FILES

Format

Purpose

Example

EXTENDED BASIC STATEMENTS

esunt [im] [wnit [m]]

N — S——
FILE #1 FILE #2
For Disk Files:

UNIT is the name of a disk file (i.e., “MASTER:",“FILE34""); m is
the number of disk storage units required for a new output file
(i.e., 10 means 10 times 1024 characters).

For Cassette Files:

UNIT is the logical tape number (1-32) (i.e., 1 = Cassette No. 1,
2 = Cassette No. 2); m is the file location on the tape (i.e., 3/4
means Cassette No. 3 and the 4th file on tape).

For Paper Tape Files:

The file designator #0 when used in a program always implies the
teletype terminal paper tape reader and punch. Therefore, a FILES
statement is not necessary for paper tape files.

The FILES statement is used to assign a physical unit to each file
designator reference in the program. All file designators used in a
program must contain a corresponding unit assignment in the
FILES statement list. The files are assigned sequentially, the first
item in the list assigns file #1, the second item assigns file #2, etc.

The file statement must appear in the program before any file
operations. It may, however, be modified after a program is loaded
and before it is run. This permits a program to be written with file
operations; the actual units to be used for the files can be assigned
at execution time.

10 FILES 3,5/2,"SAM", "JOE'"/10
makes the following assignments:

FILE #1 is Cassette Tape 3 (1st file).

FILE #2 is Cassette Tape 5, 2nd file on tape.

FILE #3 is a Disk input file already catalogued under the name
“SAM”,

FILE #4 is a new Disk output file which will be catalogued under the
name ““JOE”. It will be allocated 10 (1024) characters of
storage.

85

EXTENDED BASIC STATEMENTS

FILESAVE

Format

Purpose

Example

FILESAVE #N
where N is the file designator number.

FILESAVE is used when an output file just written is to be per-
manently saved.

FILESAVE causes the following action to be taken for each unit:

Paper Tape An end of file and 50 blank
frames are punched.

Cassette Tape------------------ An end of file is written and the
tape remains positioned where it
is. (Another file can subsequently
be written.)

Disk The file is stored and catalogued
on Disk.

200 FILESAVE #2

86

LA

FILEWRITE

Format

Purpose

Example

EXTENDED BASIC STATEMENTS

FILEWRITE #N, file element [{, file element } -]

where N is the file designator (i.e., #1, #2, etc.) and file element is
any legal numeric or alphanumeric variable, numeric or alpha-
numeric array element, alphanumeric literal, or numeric
expression.

The FILEWRITE statement causes the numeric values or alpha-
numeric character strings resulting from each file element to be
sequentially written onto the file designated. Numeric values will
be written in a format identical to that resulting from the PRINT
statement:

Format 1: SM.MMMMMMME+XX 10-1> value > 10+8
Format 2: SZZZZ.FFFF 10-1< value <10*8
Alphanumeric variables will be written identically to the charac-
ter string data they contain, except that quotation marks will be

inserted immediately before and after the string.

100 FILEWRITE #2,A,B(2),C$,D$(1,2),"ABCD",SINC.25)

where the values written might be the following:

1.5, -2.1642E+24, "MNOP', "QRS', "ABCD", .2364878.

87

EXTENDED BASIC STATEMENTS

MAT FILEREAD

Format MAT FILEREAD #N, array name [(d1 [dz])] {array name l:(d1 [dz:l) :l } ..

Purpose

Example

where N is the file designator number of the file being referenced,
and d1 and d2 are new dimensions for the array.

This statement is logically equivalent to FILEREAD, except that
each variable listed is an array variable. Each file element in each
array will be assigned a value from the file (row by row). If
optional dimensions appear in the list following the variable name,
the array will be automatically redimensioned to the new dimen-
sions. If the file is exhausted before all the arrays are filled, the
remaining elements of the array currently being worked on and all
the elements of the remaining arrays are left unchanged and
successive |IF END statements for the file will cause branching.
Alpha/numeric arrays may be used in the list. The data received
from the file must, however, be compatible (i.e., numeric data for
numeric arrays, alpha/numeric data for alpha/numeric arrays).

100 MAT FILEREAD #2, A, B, C

200 MAT FILEREAD #1, A$, B, C$(4,6)

88

MAT FILEWRITE

Format

Purpose

Example

EXTENDED BASIC STATEMENTS

MAT FILEWRITE #N, array name [{ array name } -]

where N is the file designator number of the file being referenced,
and array name is any numeric or alphanumeric array name.

The statement MAT FILEWRITE causes the values of the speci-
fied arrays to be written on the referenced file without referencing
each member individually. Each array is written row by row with
values separated by commas. Numeric values are written in a for-
mat identical to that used for PRINT (i.e., fixed or exponential
format), and alphanumeric values are written as character strings
enclosed by quotation marks.

100 MAT FILEWRITE #0, A, B, C$

200 MAT FILEWRITE #4, A, BS, C

89

BASIC TERMINAL OPERATING
INSTRUCTIONS

BASIC TERMINAL OPERATING INSTRUCTIONS

Initial Start Procedures

Deleting Incorrect Characters

The standard terminals for WANG BASIC are the 3310 1/O Writer
and the 3315 Teletype.

The first steps in entering a program into WANG 3300 BASIC are
the turning on of the terminal and signaling the system that the
user is ready to communicate with BASIC. These steps are:

1. Set the ON/OFF switch to ON on the 3310 1/0
Writer or set the LINE/OFF/LOCAL switch to LINE
on the 3315 Teletype.
2. Press the ATTENTION key on the 3310 I/O Writer or
the ESCAPE (ESC) key on the 3315 Teletype.
The system recognizes that a new user is on the air and replies
with:

3300 BASIC READY

‘3300 BASIC READY’ is the system reply; the colon on the fol-
lowing line indicates that the system belongs to the user and he
may proceed with entering his program and commands.

The first command should be START to remove any programs
which may have been entered at an earlier time.

The user may correct single characters in a line by using the back-
space key on the 3310 1/O Writer or the backarrow on the 3315
Teletype. This action ‘crosses out’ the most recently typed charac-
ters. Several characters may be so crossed out in succession, by
sequential backspaces or backarrows.

On the 3310 I/O Writer, the backspace correction sequence is
completed by manually turning the carriage to advance the paper
to the next line; the corrected text may then be entered.

—» 3 backspaces

1340 LET Q=X+4Y2
-Y2 == user correction

90

4

BASIC TERMINAL OPERATING
INSTRUCTIONS

BASIC TERMINAL OPERATING INSTRUCTIONS (continued)

Deleting the Current Line

On the 3315 Teletype, the user enters the corrected text im-
mediately following the backarrows as shown in the following
example:

X + Y2 <<<«-Y2
user correction
X = Y2 ————>-line as received by system

:310 LET Q

I

:310 LET Q

If the user detects an error in a program text line he has just
entered, he may type a degree character, ‘0’, on the 3310 1/0
Writer or a backslash character, ‘\’, on the 3315 Teletype. This
character will cause the line to be ignored. When the ‘0’ or‘\'is
encountered, the system will index to the next line and type a
colon requesting subsequent input. For example,

1120 LET X = AB/C\ (3315 Teletype)

or

1120 LET X = AB/C ©° (3310 1/0 Writer)

The user may then re-enter the correct line.

Deleting a Previously Entered Line

Requests for Execution

The user may delete a program statement line he entered early in
his program by typing the line number of the program statement
line to be deleted immediately followed by a carriage return.

This correction procedure applies only to statement lines; system
commands and immediate mode execution lines cause immediate
action once they are entered and are automatically deleted.

After the user has entered his program, he requests its execution
by entering a RUN or RERUN command. The RUN command
causes the entire program to be run from its beginning and all
variables are set to initial values of zero. RERUN, on the other
hand, does not reinitiate values (it leaves them at the current
setting). The RERUN command may be used to run a portion of a
program; e.g.,, RERUN 60 means to rerun the program beginning

91

BASIC TERMINAL OPERATING
INSTRUCTIONS

BASIC TERMINAL OPERATING INSTRUCTIONS (continued)

Breaking Program Execution

Initiating for New Program Entry

with program line 60. If the RERUN command is entered without
a line number, the program is executed from the beginning.

The user may interrupt the BASIC system while his program is
running or printing. He merely presses the ATTENTION key
on the 3310 1/O Writer or the ESCAPE (ESC) key on the 3315
Teletype. The system then stops the program execution or listing
and types out:

3300 BASIC READY

and thus returns the system to the user.

A BASIC program is initiated by entry of a START or RESTART
command. The START command initiates the entire user program
area, including the removal of all previously stored program text.
The RESTART command initiates the user program area but does
not remove variable data that is designated to be used by succes-
sive programs, (common variables).

92

BASIC ERROR MESSAGES

BASIC ERROR MESSAGES

The WANG BASIC system of error detection provides for the re-
porting of errors as they occur. The user may then correct the
error before proceeding with his program.

When an error is detected, the text line being scanned by the
system is typed (if it is not already on the typewriter sheet) and,
on the next line, an up-arrow is placed at the point of the current
scan, followed by the error message number.

The following line shows this format:

:10 DIM A(P)
T ERR 13

The user may then refer to the following table of error messages
to identify the error by code number. The table contains a
description of each error and a suggested correction procedure.

93

BASIC ERROR MESSAGES

Code 01
Error:

Cause:

Action:

Example:

Code 02
Error:
Cause:

Action:

Example:

Code 03
Error:
Cause:
Action:

Example:

Code 04
Error:
Cause:
Action:

Example:

TEXT OVERFLOW

All available space for BASIC statements and system commands
has been used.

Shorten and/or chain program by using COM statements, and con-
tinue. The compiler automatically removes the current and
highest-numbered statement.

10 FOR I=1 TO 10

$20 LET X=SINCI)D

30 NEXT I

:820 IF Z=A-B THEN 900

+ERR 01
(the number of characters in the program exceeded the text table limit when
line 820 was entered)

User must shorten and segment program.

TABLE OVERFLOW

All available space for internal compiler tables has been used
(storage of variables, values, etc.) or

An endless program loop was encountered, or
Illegal use of DEF FN statements (endless loop).

Shorten or correct and/or chain the program by using COM state-
ments and continue.

:10 DIM A(19),B(10,10),¢(10,10)
:RUN
+ERR 02

(the table space required for variables exceeded the table limit for variable
storage as line 10 was processed)

User must compress program and variable storage requirements.

MISSING COMMA
A comma (,) was expected.
Correct statement text.

110 LET STR(CAS;6,4) = "ABCD"
ERR 03
110 LET STR(CAS,6,4) = "ABCD" (Possible Correction)

MISSING LEFT PARENTHESIS
A left parenthesis (() was expected.
Correct statement text.

110 DEF FNA V)=SIN(3*Vv-1)

+ERR O4
110 DEF FNACV)=SIN(3*v-1) (Possible Correction)
94

J

Code 05
- Error:

Cause:

Action:

Example:

Code 06
Error:
Cause:
Action:

Example:

Code 07
Error:
Cause:
Action:

Example:

Code 08
Error:
Cause:
Action:

Example:

Code 09
Error:
Cause:
Action:

Example:

MISSING RIGHT PARENTHESIS

A right ()) parenthesis was expected.

Correct statement text.

110 Y=INT(1.2%5
1ERR 05
:10 Y=INT(1.215)

MISSING EQUALS SIGN
An equals sign(=) was expected.
Correct statement text.

110 DEF FNC(V)-V+2
1ERR 06
110 DEF FNC(V)=V+2

MISSING QUOTATION MARKS

Quotation marks (") were expected.

Correct statement text.

110 PRINT "ERROR
1ERR 07
:10 PRINT "ERROR"

MISSING NUMBER SIGN
A number sign (#) was expected.
Correct statement text.

:10 FILEREAD O,A,B
1 ERR 08
:10 FILEREAD #0,A,B

MISSING ASTERISK
An asterisk (*) was expected.
Correct statement text.

:10 MAT A=(3)B
+ERR 09
110 MAT A=(3)*B

95

BASIC ERROR MESSAGES

(Possible Correction)

(Possible Correction)

(Possible Correction)

(Possible Correction)

(Possible Correction)

BASIC ERROR MESSAGES

Code 10
Error:
Cause:
Action:

Example:

Code 11
Error:
Cause:
Action:

Example:

Code 12
Error:
Cause:
Action:

Example:

Code 13
Error:
Cause:

Action:

Example:

Code 14
Error:

Cause:

Action:

Example:

INCOMPLETE STATEMENT
The end of the statement was expected.
Complete the statement text.

:10 PRINT X"
TERR 10
:10 PRINT ''xX" (Possible Correction)

OR
:10 PRINT X

MISSING LINE NUMBER
The line number is missing or a referenced line number is undefined.
Correct statement text.

:10 GOSUB Z0OO
1 ERR 11
:10 GOSUB 200 (Possible Correction)

MISSING STATEMENT TEXT

The required statement text is missing (THEN, STEP, etc.)
Correct statement text.

:10 IF I=12%X,45

TERR 12
10 IF 1=12%X THEN 45 (Possible Correction)

MISSING OR ILLEGAL INTEGER

A positive integer was expected or an integer was found which
exceeded the allowed limit.

Correct statement text.

:10 COM D(P)
1ERR 13
:10 COM D(8) (Possible Correction)

MISSING OPERATOR
<

A relational operator (< , S, = | # , 2 >)
was expected.
Correct statement text.
:10 IF A-B THEN 100
1 ERR 14
:10 IF A=B THEN 100 (Possible Correction)

96

4

BASIC ERROR MESSAGES

Code 15
Error: MISSING EXPRESSION
Cause: A variable, or number, or a function was expected.
Action: Correct statement text.
Example: :10 FOR I=, TO 2
+ ERR 15
:10 FOR I=1 TO 2 (Possible Correction)
Code 16
Error: ILLEGAL USE OF A VARIABLE
Cause: A scalar variable was expected.
Action: Correct statement text.
Example: 210 FOR A(3)=1 TO 2
+ ERR 16
:10 FOR B=1 TO 2 (Possible Correction)
Code 17
Error: ILLEGAL USE OF A VARIABLE
Cause: An array variable was expected.
Action: Correct statement text.
Example: 110 DIM A2
1ERR 17
:10 DIM A(2) (Possible Correction)
Code 18
Error: ILLEGAL USE OF A VARIABLE
Cause: An alphanumeric variable was expected.
Action: Correct statement text
Example: :10 LET AS$=B
1ERR 18
:10 LET AS$=BS (Possible Correction)
Code 19
Error: MISSING NUMBER
Cause: A number was expected.
Action: Correct statement text.
Example: :10 DATA L
1ERR 19
:10 DATA 1 (Possible Correction)

97

BASIC ERROR MESSAGES

Code 20
Error:
Cause:
Action:

Example:

Code 21
Error:
Cause:
Action:

Example:

Code 22
Error:
Cause:

Action:

Example:

Code 23
Error:
Cause:

Action:

Example:

ILLEGAL NUMBER FORMAT
A number format is illegal.
Correct statement text.

110 A=12345678.23 (More than 8 digits of mantissa)
1ERR 20
:10 A=12345678 (Possible Correction)

MISSING LETTER OR DIGIT
A letter or digit was expected.
Correct statement text.

:10 DEF FN.(X)=Xt5-1
1ERR 21
:10 DEF FN1(X)=X15-1 (Possible Correction)

ILLEGAL VARIABLE ATTRIBUTE USAGE

A variable was referenced as both a scalar and an array variable;
or an array variable was not referenced as previously defined in
this program or as a common variable in another program (i.e., an
array variable has been referenced both as a 1-dimensional and as a
2-dimensional array).

Correct statement text.

110 DIM A(5,5)
:20 A=3

:90 END
:RUN

20 A=3
+ERR 22
:20 B=3 (Possible Correction)

NO PROGRAM STATEMENTS

A RUN or RERUN command was entered but there are no pro-
gram statements.

Enter program statements.

:START
:RUN
+ERR 23

98

Code 24
Error:
Cause:

Action:

Example:

Code 25
Error:

Cause:

Action:

Example:

Code 26
Error:
Cause:

Action:

Example:

BASIC ERROR MESSAGES

ILLEGAL IMMEDIATE MODE STATEMENT

An illegal verb or transfer in an immediate execution statement
was encountered.

Re-enter a corrected immediate execution statement.

110 PRINT "A="';A
:A=1 :GO TO 10

A=1 :GO TO 10
+ERR 24

ILLEGAL GOSUB/RETURN USAGE

There is no companion GOSUB statement for a RETURN state-
ment, or a RERUN starting location is illegal.

Repeat execution request with a RUN command, or correct the
program.

10 FOR I=1 TO 20
220 X=I®¥SINCI®*L4)
25 GO TO 100

:30 NEXT I: END
:100 PRINT "X="';X
:110 RETURN

:RUN

X=-.,7568025

110 RETURN

1ERR 25
:25 GOSUB 100 (Possible Correction)

ILLEGAL FOR/NEXT USAGE

There is no companion FOR statement for a NEXT statement, or
a RERUN starting location is illegal.

Repeat execution request with a RUN command, or correct the
program.

:10 PRINT "1=";1
120 NEXT 1
130 END
:RUN
I=0
20 NEXT 1
+ERR 26
:5 FOR I=1 TO 10 (Possible Correction)

99

BASIC ERROR MESSAGES

Code 27
Error:
Cause
Action:

Example:

Code 28
Error:
Cause:

Action:

Example:

Code 29
Error:
Cause:
Action:

Example:

INSUFFICIENT DATA
There is insufficient data for READ statement requirements.
Correct program to supply additional data.

:10 DATA 2
:20 READ X,Y
30 END

:RUN

20 READ X,Y

tERR 27

:11 DATA 3 (Possible Correction)

DATA REFERENCE BEYOND LIMITS

The data reference in a RESTORE statement is beyond the exist-
ing data limits.

Correct the RESTORE statement.

:10 DATA 1,2,3
:20 READ X,Y,Z
:30 RESTORE 5

LRI Y

:90 END
:RUN
30 RESTORE 5
1ERR 28
:30 RESTORE 2 (Possible Correction)

ILLEGAL DATA FORMAT
The data format for an INPUT statement is illegal (format error).

Re-enter data in the correct format starting with erroneous num-

ber or terminate run with the ESCape (or ATTention) key and run
again.

:10 INPUT X,Y

LRI I)

190 END
:RUN
JINPUT
11A,2E-30
tERR 29
:12,2E-30 (Possible Correction)

100

Code 30
Error:
Cause:
Action:
Example:

Code 31
Error:
Cause:
Action:

Example:

Code 32
Error:
Cause:

Action:

Example:

BASIC ERROR MESSAGES

EXPECTED LITERAL
An alphanumeric literal string (enclosed in quotes) was expected.

Correct data value.

:10 READ A$
120 DATA ABC
:RUN

20 DATA ABC

1ERR 30
:20 DATA "ABC" (Possible Correction)

UNDEFINED FN FUNCTION

An undefined FN function was referenced.

Correct program to define or reference the function correctly.

110 X=FNC(2)

120 PRINT "X='"1;X
130 END

:RUN

10 X=FNC(2)
1ERR 31
:05 DEF FNC(V)=CO0S(2%V) (Possible Correction)

ILLEGAL FN USAGE

More than five levels of nesting were encountered when evaluating
an FN function.

Reduce the number of nested functions.

110 DEF FN1(X)=1+X :DEF FN2(X)=1+FN1(X)

120 DEF FN3(X)=14FN2(X) :DEF FN4(XD=1+FN3(X)
130 DEF FN5(XD=1+FN4(X) :DEF FN6(X)=1+FN5(X)
140 PRINT FN6(2)

*RUN

10 DEF FN1(X)=1+X :DEF FN2(X)=1+FN1(X)
+ERR 32
‘40 PRINT 1+4FN5(2) (Possible Correction)

101

BASIC ERROR MESSAGES

Code 33
Error:
Cause:

Action:

Example:

Code 34
Error:
Cause:

Action:

Example:

Code 35
Error:
Cause:

Action:

Example:

Code 36
Error:
Cause:
Action:

Example:

ILLEGAL VALUE FOR ARRAY DIMENSION

The values assigned for array dimensions exceed the allowable
limits; a dimension is greater than 255; an array variable sub-
script exceeds the defined dimension; or illegal STR function
specifications.

Correct the program.

110 DIM A(2,3)
120 ACL, D=1
130 END

:RUN

20 AC1,4)=1
1ERR 33
:10 DIM A(2, 4y (Possible Correction)

EXPONENT OVERFLOW

The resulting magnitude of the number calculated in an arithmetic
operation or entered was greater than or equal to 1063,
(+,—, %, /, 1, TAN, EXP, Matrix Operations).

Correct the program in accordance with the limit.
:A=5E60%4E62
A=5E60*LEG2

TERR 34

EXPONENT UNDERFLOW

The resulting magnitude of the number calculated in an arithmetic
operation or entered was less than or equal to 1065,

(+.—, *,/, 1, TAN, EXP, Matrix Operations).
Correct the program in accordance with the limit.
:PRINT (2E-65)/(2E+24)

PRINT (2E-65)/(2E+24)
tERR 35

DIVISION BY ZERO

A division by zero has been attempted.
Correct the program data.

125 X=0

126 Y=Z/X

:RUN

26 Y=Z/X
TERR 36

102

Code 37
Error:
Cause:
Action:

Example:

Code 38
Error:
Cause:
Action:

Example:

Code 39
Error:
Cause:

Action:

Example:

Code 40
Error:
Cause:
Action:

Example:

BASIC ERROR MESSAGES

ILLEGAL LOG FUNCTION ARGUMENT

A LOG function argument is zero or negative.
Correct the program.

:PRINT LOG(-.8)

PRINT LOG(-.8)
1ERR 37

ILLEGAL SQR FUNCTION
A SQR function argument is negative.

Correct the program.
:PRINT SQR(-.8)

PRINT SQR(-.8)
1ERR 38

INVALID EXPONENTIATION

An exponentiation, (X1 Y), was attempted where X was negative
and Y was not integral, producing an imaginary result.

Correct program data.
150 D=(-3.2)12.5
:RUN

50 D=(-3.2)1 2.5
TERR 39

ILLEGAL SIN, COS, OR TAN ARGUMENT
The function argument exceeds 1ES8.

Change the function argument.

110 X=SIN(6E12)

:RUN

10 X=SIN(6E12)
T ERR 4O

103

BASIC ERROR MESSAGES

Code 41
Error: MATRIX NOT SQUARE
Cause: The dimensions of the operand in a MAT inversion or identity
are not equal.
Action: Correct the array dimensions.
Example: 110 MAT A=IDN(3,4)
RUN
10 MAT A=IDN(3,4)
+ERR 41
110 MAT A=IDN(3,3) (Possible Correction)
Code 42
Error: SINGULAR MATRIX
Cause: The operand in a MAT inversion statement is singular and cannot
be inverted.
Action: Correct the program.
Example: 110 MAT A=ZER(3,3)
120 MAT B=INV(A)
*RUN
20 MAT B=INV(A)
tERR 42
Code 43
Error: ILLEGAL REDIMENSIONING OF ARRAY
Cause: The space required to redimension the array is greater than the
space initially reserved for the array.
Action: Reserve more space for array in DIM or CON statement.
Example: 110 DIM A(3,4)
120 MAT A=CON(5,6)
‘RUN
20 MAT A=CON(5,6)
1ERR 43
110 DIM A(5,6) (Possible Correction)
Code 44
Error: ILLEGAL MATRIX OPERAND
Cause: The same array name appears on both sides of the equal sign in a
MAT multiplication or transposition statement.
Action: Correct the statement.
Example: 110 MAT A=A¥B
1ERR 44
:10 MAT C=A%B (Possible Correction)

104

Code 45
Error:
Cause:

Action:

Example:

Code 46
Error:

Cause:

Action:

Example:

Code 47
Error:
Cause:

Action:

Example:

BASIC ERROR MESSAGES

MATRIX OPERANDS NOT COMPATIBLE

The dimensions of the operands in a MAT statement are not com-
patible; the operation cannot be performed.

Correct the dimensions of the arrays.

110 MAT A=CON(2,6)

120 MAT B=IDN(2,2)

130 MAT C=A+B
:RUN

30 MAT C=A+B
tERR 45
110 MAT A=CON(2,2) (Possible Correction)

MISSING FILE VERB

A file verb was expected (FILEEND, FILESAVE, FILEREAD,
etc.)

Correct statement text.

:10 FILEREED #0,A,B
+ERR 46
110 FILEREAD #0,A,B (Possible Correction)

ILLEGAL IMAGE STATEMENT

There are no “#'"' characters in the image statement or the total
number of characters in a single format specification for numeric
image exceeds 24 characters.

Correct the image statement.

:10 % THE ANSWER IS - - -

1 ERR 47
:10 % THE ANSWER IS ### (Possible Correction)

105

BASIC ERROR MESSAGES
Code 48
Error: ILLEGAL PRINT USING REFERENCE J
Cause: A PRINT USING statement does not reference an image state- |
ment. (Statement with leading % character)
Action: Correct reference.
Example: :10 GO TO 20
:20 PRINT USING 10,A
130 % A=Hi##
:RUN
10 GO TO 20
1ERR 48
120 PRINT USING 30,A (Possible Correction)
Code 49
Error: ILLEGAL COMMON ASSIGNMENT
Cause: A COM statement variable definition was preceded by a non-
common variable definition, ora RERUN was requested after new
COM statements were added.
Action: Correct program, making all COM statements the first numbered
lines, or execute with a RUN command.
Example: :10 A=1 :B=2
120 COM A,B J |
:99 END _
:RUN
20 COM A,B
1ERR 49
:10 (RET) (Possible Correction)
:30 A=1 :B=2

106

PROGRAM LIMITS

PROGRAM LIMITS

An estimate of the partition size required to run a particular
BASIC program is given by the following equation:

where:

partition size = C + 5(N) + 18(A) + E

C = number of characters in the program (including
spaces, carriage, returns, etc.)

N = number of numeric variables (each element of an ar-
ray is a variable)

A = number of alphanumeric variables (each element of
an array is a variable)

E = space required for FOR and GOSUB processing and
expression evaluation. E = 200 bytes for an average
program but varies with program complexity.

107

APPENDIX A

APPENDIX A:

BASIC System Syntax Rules

A-1

(This page intentionally left blank)

APPENDIX A

APPENDIX A: BASIC System Syntax Rules

This appendix concisely states the syntax rules for the BASIC system. The following
notation is used for the formal representation:

1. Square brackets ([]) indicate that the enclosed item is optional.

2. Braces ({}) enclosing vertically stacked items indicate that one of the
items is required. Braces enclosing a group of items indicate the contents
of the braces is required.

3. Ellipsis (...) indicates that the immediately preceding item may occur once
or many times in succession.
4. Except within quotation marks ("), BASIC Syntax ignores blanks.
I. System Commands

A system command is a user request for the system to perform some global func-
tion. Any user input which is not recognized by the system as a system command is
considered to be a program statement. All system commands must be terminated
with a carriage return. System command syntax is:

LIST [’statement number’ [;statement number’]]
LOAD ‘unit’ [/ ‘integer’]

RUN .

SAVE ‘unit’ [/ ‘integer’]

RERUN [‘statement number’]

START

RESTART

Il. Program Statements.

There are two types of BASIC program statements: program statements and imme-
diate statements. Program statements always begin with a statement number, while
immediate statements do not. A list of program statement syntax is given below,
followed by definitions of the individual syntax elements.

COM lscalar . ’ ’ scalar . ’
array variable ‘array variable

DATA { umber’ } [{ umber }] .
text string text string
Note — ** “text string’ "’ for Extended BASIC only.

DEF FN {‘:figi? } (‘scalar’) = ‘expr’

DIM ‘array variable’ [{, ‘array variable’ }. . .]
END

FOR ‘scalar’ = ‘expr’ TO ‘expr’ [STEP ‘expr’]
GOSUB ‘statement number’

GO TO ‘statement number’

IF ‘relation’” THEN ‘statement number’
INPUT ‘variable’ [{, ‘variable’'}. . .]

‘ “numvar’ [{,'numvar’} ..
[LET] l ‘alphavar’ [{ , ‘alphavar’}. ..

I;—l
1

‘expr’ l

= ('alphavar’ ’
* "text string’ "' -

[
|

APPENDIX A

NEXT ‘scalar’

PRINT [{ ‘" ‘printelement’ } ...] [‘t]
RANDOM

READ ‘variable’ [{,‘variable’} ...]

REM ‘text string’

RESTORE [‘integer’]

RETURN
STOP

ON |
TRACE {OFF;

11l. Extended Basic Statements

CHAIN [R] ‘unit’

FILEEND ‘file number’
g , | "textstring’ "

FILEMOD ‘file number’, SCRATCH }

FILEREAD ‘file number’, ‘variable’ [{, ‘variable’ } ...]

FILES ‘unit” [/ ‘integer’] [{ ,‘unit’ [/‘integer’] }...]

FILESAVE ‘file number’

FILEWRITE ‘file number’, ‘pu element’ [{ ,’puelement’ } ...]
GOTO ‘statement number’ [{ ,‘statementnumber’ } ...] ON ‘expr’
IF END ‘file number’ THEN ‘statement number’

MAT ‘letter’ = ‘letter’ + ‘letter’ (MAT addition)

MAT ‘letter’ = CON[‘redim expr’] (MAT CON function)

MAT ‘letter’ = ‘letter’ (MAT equality)

MAT ‘letter’ = IDN[‘redim expr’] (MAT IDN function)

MAT ‘letter’ = INV (‘letter’) (MAT inversion)

MAT ‘letter’ = ‘letter’ * ‘letter’ (MAT multiplication)

MAT ‘letter’ = (‘expr’) * ‘letter’ (MAT scalar multiplication)
MAT ‘letter’ = ‘letter’ — ‘letter’ (MAT subtraction)

MAT ‘letter’ = TRN (‘letter’) (MAT transposition)

MAT ‘letter’ = ZER[‘redim expr’] (MAT ZER function)

MATFHEREAD“Menwnmﬂﬂmnm’w]rmdmexmﬂ[{/wnﬂ'ﬁ]rmmmexmﬂfuj
MAT FILEWRITE ‘file number’, ‘letter’ [$] [{ , ‘letter' [$]} .. .]

MAT INPUT “letter’ [$] [‘redim expr’] [{, ‘letter’ [$] [‘redimexpr]} ...]

MAT PRINT ‘letter’ [$] [{ ‘' ‘letter’[$] } ...1 [t]

MAT PRINT USING ‘statement number’, ‘letter’ [$] [{ ‘t’ ‘letter’ [$] } .. J]

MAT READ ‘letter’ [$] [‘redimexpr’] [{ , ‘letter’ [$] [‘redim expr'] }...]

PRINT USING ‘statement number’, ‘pu element’ [{ ‘t' ‘pu element’ }oooo1 ']

%" "text string’ ”* ‘format specification’ [{ ” ‘text string’ * ‘format specification’ } .. .]

IV. Individual Syntax Elements
The table below lists alphabetically the definitions of all language syntax elements:

‘alpha array element’:: = ‘letter’ $ (‘expr’ [,’expr’])
‘letter’ $
‘alpha array element’

‘alphavar’ :: = ‘letter’ $ ' .
STR , ‘integer’ [, ‘integer’]

‘alpha array element’

‘array variable’ :: = ‘letter’ (‘integer’ [,’integer’])
‘builtin’ :: = one of the three character text strings: SIN, COS, TAN, EXP,
ATN, LOG, ABS, SQOR, INT, RND, & SGN.
‘digit’ :: = digit O through 9
A4

APPENDIX A

‘exponent’ :: = E [{i}] ‘integer’ (integer less than 64)

. ’ + I} I
expr’ :: = [{_}] term

‘file number’ :: = # ‘integer’

‘format specification” :: = [+] # [# ...]1 [.1 [{#}...1 [11]
where total length of specification is not greater
than 24 characters.

‘fraction’ :: = . ‘integer’
{FN 'Ietter'} (expr')
‘builtin’
‘function’ :: = BOOL (‘relation’)

{AND (‘expr’, ‘expr’)
OR pr’, ‘expr’,

‘integer’ :: = ‘digit’ [‘digit’...]

‘letter’ :: = any letter of the alphabet
‘null’ :: = no or blank characters
‘num array element’ :: = ‘letter’ (expr’ [,’expr’])
‘integer’
‘number’ :: = 3‘fraction’ % [‘exponent’]
‘integer’ ‘fraction’
, . {’scalar'
numvar’ :: = s ,
num array element }
‘numvar’
‘operand’ :: § z’number’ 2
‘function’
“variable’

‘expr’
TAB (‘expression’)
" ‘text string” "’

‘print element’ :: =

‘null’
‘expr’
‘pu element’ :: = ‘text string’ "’
‘variable’
‘redim expr’ :: = (‘expr’ [,’expr'])
For For
3310 3315
> >
< <
4 M ’ — ’ # < 4 ’
relation’ :: = ‘expr : or ~ expr
= < =
> > -
‘scalar’ :: = ‘letter’ [‘digit’]
‘letter’
‘standard character’ :: = {, .,
digit
‘statement number’ :: = ‘integer’ (four digits or less)
M ={;} ‘operand’
+
(‘expr’) . ‘term’
‘term’ :: = or ¥
‘operand’ /T

A-5

APPENDIX A

‘text string’ :: = any string of typewriter characters excluding carriage
return, backspace, etc.

" "text string’ "’
‘unit’ ;= g ‘integer’ (1~32)$

‘null’

‘variable’ ::

1]

‘numvar’
‘alphavar’ (Extended BASIC only)

A-6

APPENDIX B

APPENDIX B:

Sample Programs

B-1

(This page intentionally left blank)

APPENDIX B

B.1 Monthly Mortgage Payment Calculation

The following program illustrates the use of nested loops to per-
form a calculation a number of times with different values.

The problem is to calculate monthly mortgage payments for a
$50,000 loan with a $10,000, $15,000, and $20,000 down-
payment, at interest rates of 7.5%, 8.0%, 8.5%, and 9.0% per year,
and for loan periods of 20, 25, and 30 years. The monthly pay-
ment is given by:

M=P*I/(1—(1+1)1 (=N))

where: P = principle
I = monthly rate of interest
N = number of monthly payments.

:05 REM——MONTHLY MORTGAGE PAYMENT
110 PRINT “DWNPYMT", “INT. RATE"”, “YRS.”, “MO. PYMT”
:20 FOR D = 10000 TO 20000 STEP 5000

:30 FOR R = .075 TO .09 STEP .005

:40 FORY =20 TO 30STEP 5

:50. P =50000 — D

60 |=R/12

:70 N=Y*12

80 M=P*I/(1—(1+1)1(=N))

:90 PRINT D, R,Y, INT (100*M)/100

:100 NEXTY

110 NEXT R

:120 NEXT D

:130 END

:RUN

DWNPYMT INT. RATE YRS. MO. PYMT.
10000 7.5000000 E-02 20 322.23
10000 7.5000000 E-02 25 295.59
10000 7.5000000 E-02 30 279.68
10000 8.0000000 E-02 20 334.57
10000 8.0000000 E-02 25 308.72
10000 8.0000000 E-02 30 293.5
10000 8.5000000 E-02 20 347.12
10000 8.5000000 E-02 25 322.09
10000 8.5000000 E-02 30 307.56
10000 9.0000000 E-02 20 359.89
10000 9.0000000 E-02 25 335.67
10000 9.0000000 E-02 30 321.84
15000 7.5000000 E-02 20 281.95
15000 7.5000000 E-02 25 258.64
15000 7.5000000 E-02 30 244.72

15000 8.0000000 E-02 20 292.75

APPENDIX B

B.2 Quadratic Equation Solution

This program computes the roots of second degree equations with
real coefficients of the form:

A*X12+B*X+C=0
by the well-known formula:
X =(—B +SQR (B 12— 4*A*C))/(2+A)

When the discriminant M =B 12— 4*A*C < 0, the roots of the equa-
tion are complex; otherwise, the roots are real. Since we cannot
compute the square root of a negative number, we compute
SQR(ABS(M)) and then branch (line 40) into two cases: real roots
or complex roots.

:05 REM——QUADRATIC EQUATION SOLUTION
110 READ A, B, C

20M=B12-4*A*C

:30 D = SQR (ABS(M))

:40 IFM <0 THEN 70

:50 PRINT ““REAL:", (—B+D)/(2*A), (—B—D)/(2*A)
:60 GO TO 10

:70 PRINT “COMPLEX:", —B/2*A, “+ or =", D/(2*A);"I"
:80GOTO 10

:100 DATA 1, 7, 12

1110 DATA 1,0, 2, 2, —4, —30

1999 END

:RUN

REAL: -3 —4

COMPLEX: -0 +or—- 1.4142136 |
REAL: 5 -3

B-4

B.3 Change Maker

APPENDIX B

This program computes the change a customer will receive after
paying for a bill. The change is broken down into the minimum
number of bills and/or coins that the cashier must give to the
customer. Note: here change can only be made with pennies,
nickels, dimes, quarters, $1, $5, $10, and $20.

In the FOR,NEXT loop, it is first tested to see if the change, C, is
greater than or equal to X which has as its first value $20. If it is
not, the test is tried for the next smallest denomination, and then
the next, etc. If C = X, then the maximum whole number of
times, M, that X divides C is computed by line 150 and the re-
sulting change is computed by line 160. The quantity and
denomination are then printed out. The loop is then repeated for
the next smallest denomination.

:05 REM——CHANGE MAKER
(10 PRINT “INPUT AMOUNT OF BILL"

:20 INPUT B

:30 PRINT “INPUT PAYMENT"

140 INPUT P

:60 IF P2 B THEN 100 (For 3310; for 3315, >=)

:60 PRINT “INSUFFICIENT PAYMENT”
:65 PRINT “INPUT ADDITIONAL PAYMENT"”"
170 INPUT A

:80 P = P+A

:90 GO TO 50

:100C=P -B

:110 PRINT “CHANGE 1S:$”, C

1120 IF C=0 THEN 220

:130 PRINT “QUANTITY", “DENOMINATION""
:140FOR1=1TO 8

:160 READ X

:160 IF X > C THEN 200

:170 M = INT(C/X)

1180 C=C— M*X

1190 PRINT M, X

:200 NEXT |

:210 DATA 20, 10, 5, 1, .25, .1, .05, .01
1220 END

:RUN

INPUT AMOUNT OF BILL

INPUT

:12.34

INPUT PAYMENT

INPUT

:13.00

CHANGE IS: $.66

QUANTITY DENOMINATION

2 .25

1 .1

1 5.0000000 E-02
1 1.0000000 E-02

B-5

APPENDIX B

B.4 Plotting J
The following program illustrates the use of the TAB instruction
in plotting functions. Here we plot f(x) = x 1 2 from —2 TO 2.

:056 REM——PLOT X 1 2

10 FOR X = -2 TO 2 STEP .2

:20 PRINT X;

:25 PRINT TAB (16 + 6*X*X); “*"
:30 NEXT X

:40 END

:RUN

B-6

APPENDIX B

B.5 Mean, Variance, and Standard Deviation

Frequently, in statistical problems it is necessary to calculate the
sums and sums of squares for sets of data. The technique used for
the computer solution of such problems is illustrated in the fol-
lowing program.

The mean (M), variance (V), and standard deviation (D) of a set of
data are given by the following formulae:

N

n
V(S X2 - NeM? (N 1)
i=1

D=4V

where N = number of data points and X1, X9, =+, X, are the data

points. The number of data points and then the actual data points
are entered for each set of data to be processed. The variables S
and T sum the data and the squares of the data, respectively.
Initially, these are set to zero. Then, a data point is read and added
to S and the square of the number added to T. This is done for
each data point by the FOR ,NEXT loop. The mean and variance
are then calculated and the desired results printed out. The pro-
gram then returns to line 20 to process the next set of data.

:06 REM——MEAN, VARIANCE, ST. DEV.
:10 PRINT “MEAN", “VARIANCE", “ST. DEV.”
:30 READ N

:40S, T=0

:50 FOR I =1 TO N

:55 READ X

160 S = S+X

70 T = T+X12

:80 NEXT |

:90 M = S/N

100 V=(T—N*M*12)/(N=1)

:110 PRINT M, V, SQR (V)

:120 GO TO 30

:800 DATA 7,1, 2, 3,4,5,6, 7

:810 DATA 8,5.4,4.0,6.2,8.5,6.2,4.9,7.8,5

:999 END

:RUN

MEAN VARIANCE ST. DEV.
4 4.6666667 2.1602469
6 2.3057143 1.5184579

B-7

APPENDIX B

B.6 Matrix Multiplication

This program illustrates the use of the COM statement to segment
programs that would be too large to fit into the computer memory
in their entirety.

A matrix, M, is an array of numbers such as

w N

123
456
129 1

The element in the ““I"” row and “J” column of M is denoted Mij-

The matrix is said to be of dimension NxM if N = number of
rows and M = number of columns in M. The product of an NxM
matrix A by an RxP matrix B is the NxP matrix C where:

M

C.= 3)y * bkj' Note: it is required that R=M.
k=1

The first segment of this program reads the matrix elements.
Matrix A is stored in the array variable A(l,J) such that A(lJ) =
ajj- Similarly, B(1 J) = bij- These array variables and the dimen-

sions of the matrices are then saved in the memory for the second
segment of the program and the rest of the first segment is cleared
from the memory. The second segment performs actual multiplica-
tion and prints out the resulting matrix. Each element in the
product C is computed by the FOR,NEXT loop in lines 70 — 90.

:05 REM——MATRIX MULTIPLICATION
:10 COM A (7,7),B(7,7), N, M, P, R
:20 READN,M

:30 FORI=1 TON

140 FORJ=1TOM

:60 READ A(l,J)

:60 NEXTJ

(70 NEXT |

:80 READ R,P

:90 IF R=M THEN 120

:100 PRINT “MATRICES INCOMPATIBLE"
:110 STOP

120 FOR I=1 TOM

130 FOR J=1TOP

:140 READ B(1,J)

1160 NEXT J

:160 NEXT |

:800 DATA 4,3

:810 DATA 1,0, —1

:811 DATA 2,2,2

:812 DATA —4, 4,1

:813 DATA3,0,0

:815 DATA 3,4

:816 DATA1,2,3,4

B-8

J

APPENDIX B

B.6 Matrix Multiplication (continued)

:817 DATA -2,0,0, 1
:818 DATA 1,1, 2,2
:999 END

:RUN

END PROGRAM

:RESTART

110 COM A(7,7), B(7,7),N,M, P, R
:20 DIM C(7,7)

:30 IF R=M THEN 40

:36 STOP

140 FOR I=1 TO N

:50 FOR J=1 TO P

60 C(1,J) = 0

:70 FOR K=1 TO M

:80 C(LJ) = C(1,J) + A(I,K) * B(K,J)
:90 NEXT K

1100 PRINT C(1,J),

1110 NEXT J

1130 NEXT |

:140 END

:RUN

6 10 14
-7 -10 -18
6 9 12

w o oo

B-9

APPENDIX B

B.7 Simulation of Dice Game

This program illustrates how the computer can simulate real-life
processes. In this case we simulate the game of ‘’shooting craps’’.
Lines 05 — 70 show how REM statements can be used to supply
the user of a program with necessary information. In line 130,
the player’s bet is inputed. Then, in subroutine 300 — 340, the
rolling of the dice is simulated using the function RND. An integer
from 1 to 6 is generated for D1 (the value of the first die) and D2
(the value of the second die). Hence, D = D1 + D2 is the number
rolled.

Next, in lines 140 — 180 it is determined whether the player wins,
loses, or must roll again. If he loses (Rule 2), “YOU LOSE"” is
printed out (line 400); the total winnings are computed (line 410)
and printed out (line 530). The program then returns to line 100
to take the next bet. Similarly, if the player wins (Rule 1), “YOU
WIN™ is printed out (line 500). The total winnings are computed
(line 510) and printed out (line 530). The program returns to line
100 for next bet unless the house is broken in which case the pro-
gram so states and ends. If the player must roll again, subroutine
300 — 340 is repeated and again it is determined whether the
player wins, loses, or must roll again.

The program ends when the house is broken or a bet of $0 is in-
puted. This method of ending a program is commonly used when
a program is to be repeated an arbitrary number of times.

1 RANDOM

05 REM——SIMULATION OF DICE GAME

10 REM——RULES

20 REM——1. IF 7O0R 11 IS ROLLED ON FIRST THROW,
25 REM——YOU WIN.

30 REM—-2. IF 2,3, 0R 12 1S ROLLED ON FIRST THROW,
35 REM——YOU LOSE.

40 REM—-3. IF ANOTHER NUMBER IS ROLLED, KEEP
50 REM——ROLLING UNTIL THIS NO. IS ROLLED AGAIN
60 REM——(YOU WIN) OR A 7 IS ROLLED (YOU LOSE).
70 REM——4. HOUSE LIMIT IS $1000.

80 A=0

90 PRINT

110 PRINT “YOUR BET IS?"”

120 INPUT B

125 IF B=0 THEN 999

130 GOSUB 300

140 IF D<4 THEN 400

150 IF D=12 THEN 400

160 IF D=7 THEN 500

170 IF D=11 THEN 500

180 P=D

190 GOSUB 300

200 IF D=P THEN 500

210 IF D=7 THEN 400 :GOTO 190

300 REM——ROLL DICE

310 D1=INT (6*RND(X)+1)

B-10

APPENDIX B

Simulation of Dice Game (continued)

320 D2 = INT(6*RND(X)+1)

330 D=D1+D2

333 PRINT “YOU ROLL:";D

335 PRINT D1,D2

340 RETURN

400 PRINT “YOU LOSE"

410 A=A—-B

420 GOTO 530

500 PRINT ““YOU WIN!"

510 A=A+B

530 PRINT “YOUR WINNINGS ARE $'*;:A
535 IF A >1000 THEN 900

540 GO TO 90

900 PRINT “CONGRATULATIONS!!!! YOU BROKE THE HOUSE.”
999 END

:RUN

YOUR BET IS?

INPUT

:100

YOU ROLL: 11

6 5
YOU WIN!

YOUR WINNINGS ARE $ 100

YOUR BET IS?

INPUT

:260

YOU ROLL: 5

4 1
YOU ROLL: 11

6 5
YOU ROLL:5

3 2
YOU WIN!

YOUR WINNINGS ARE $ 350

YOUR BET iS?

INPUT

:200

YOU ROLL: 10

6 4
YOU ROLL: 5

3 2
YOU ROLL: 6

4 2
YOU ROLL: 4

2 2
YOU ROLL: 7

2 5
YOU LOSE

YOUR WINNINGS ARE $ 150

B-11

	Cover
	Preface
	Table Of Contents
	Introduction
	Wang 3300 BASIC
	BASIC Program Structure and Components
	BASIC System Commands
	LIST
	LOAD
	RERUN
	RESTART
	RUN
	SAVE
	START

	BASIC Statements
	COM
	DATA
	DEF
	DIM
	END
	FOR
	GOSUB
	GO TO
	IF
	INPUT
	LET
	NEXT
	PRINT
	RANDOM
	READ
	REM
	RESTORE
	RETURN
	STOP
	TRACE

	Extended BASIC Structure and Components
	Extended BASIC Statements
	CHAIN, CHAINR
	GOTO ON
	PRINT USING
	% - Image Statement (For PRINT USING)
	Matrix Operations
	MAT Addition
	MAT CON
	MAT Equality
	MAT IDN
	MAT INPUT
	MAT INV and DET
	MAT Multiplication
	MAT PRINT
	MAT PRINT USING
	MAT READ
	MAT Scalar Multiplication
	MAT Subtraction
	MAT TRN
	MAT ZER

	Data File Operations
	IF END
	FILEEND
	FILEMOD
	FILEREAD
	FILES
	FILESAVE
	FILEWRITE
	MAT FILEREAD
	MAT FILEWRITE

	BASIC Terminal Operating Instructions
	BASIC Error Messages
	Appendix A: BASIC System Syntax Rules
	Appendix B: Sample Programs

